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OPTIMAL CONTROL AND IDENTIFICATION OF SPACE STRUCTURES

November 30, 1987

J.S. Gibson, Principal Investigator
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This research has dealt with optimal control and adaptive

parameter identification and control of distributed systems, with

primary application to large flexible space structures. The

research has developed both mathematical theory and numerical

methods for design of control laws and compensators for complex

distributed systems like large space platforms and antennas.

Approximation theory that serves as the basis for computer aided

design of control systems involving partial and functional

differential equations has been an especially improtant part of

this research project. Also, variable-order adaptive parameter

estimators and adaptive controllers have been developed for

distributed systems, and the parameter estimators (lattice

filters) have been applied to both numerical simulations and

experimental structures.

Approximation in ODtimal Control of. Distributed Sy'mtem

In optimal control of distributed systems, we have studied

control problems for infinite dimensional systems with quadratic

performance criteria. These problems require the solution of
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infinite dimensional Riccati operator equations, which must be

solved numerically by large-order approximations. Approximation

theory and numerical results for continuous-time optimal contrel

are given in [1,2,16].

We have collaborated with Professor I. Gary Rosen to develop

approximation theory and numerical methods for discrete-time

infinite dimensional optimal regulator problems and to

demonstrate the practical implications of the theory and the

usefulness of the numerical methods on several examples,

involving flexible structures, diffusion processes and time-delay

systems [3,4,5,6,15]. In these numerical examples, we have

discovered important relationships between the length of the

sampling interval (the time step) and the numerical condition of

the approxomating finite-dimensional discrete-time control

problems.

In connection with optimal control of flexible space

structures, we have investigated integrated control-structure

design, by which we mean simultaneous optimal design of structure

and controller. We have combined structural weight and

robustness with respect to modelling errors in an overall

objective functional for integrated control-structure

optimization. This results in a nonlinear programming problem

whose solution we have demonstrated in several numerical examples 0 y-

(7,8,16,17].
By_
DIstribution/

Av&1lability Codes

jAvail anid/Or

Dtst Spec La
W- O k.



3

Adaptive Parameter Identification and Control of Distributed 
Systems

Another area of primary interest in this project has been

adaptive parameter identification and adaptive control of

distributed systems. We have studied the application of modern

least-square identification schemes to infinite dimensional

systems, and our most important results concern lattice filters

for estimating coefficients in infinite dimensional

autoregressive-moving average (ARMA) models [9,10,11,12,15].

Because lattice filters are recursive in order as well as in

time, they permit the order of the model to vary adaptively as

either more structural modes are excited or as higher frequency

modes are damped out while lower modes remain excited. We have

developed a vector-channel lattice filter (10,15], which is an

extension of previous lattice filters and which is important for

applications with several measurements from the same structure.

With experimental data from a large and very flexible grid at the

NASA Langley Research Center, we have demonstrated the

effectiveness of lattice filters for adaptive identification and

prediction of flexible structures [11].

We have begun developing approximation theory that will

predict the performance of lattice filters with structures having

various types of damping (12]. We expect such theory to be

important in both adaptive identification and adaptive control of

large space structures.
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Also, we have incorporated our adaptive parameter estimators

into variable-order adaptive control algorithms for flexible

space structrues. Our main application so far has been to

robotic manipulators with flexible links (13,14,18,19). We plan

to develop similar control algorithms for large flexible

platforms and antennas with structure similar to the flexible

grid on which (11) is based.
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ABSTRACT

We consider the approximation of optimal discrete-time linear quadratic Gaussian (LQG)

compensators for distributed parameter control systems with boundary input and unbounded

measurement. Our approach applies to problems that can be formulated in a state space on which

both the discrete-time input and output operators are continuous. Approximating compensators are

obtained via application of the LQG theory and associated approximation results for infinite

dimensional discrete-time control systems with bounded input and output. Numerical results for

spline and modal approximation schemes used to compute optimal compensators for a one

dimensional heat equation with either Neumann or Dirichlet boundary control and pointwise

measurement of temperature are presented and discussed.



1. Introduction

In this paper we develop an approximation theory for the computation of optimal discrete-time

linear quadratic Gaussian (LQG) compensators (combined feedback control law and state estimator)

for distributed parameter systems with boundary input or control and unbounded output or

measurement. In a continuous time setting, boundary input typically results in an unbounded input

operator. That is, the system's input operator maps the control input into a space larger than the

state space in which the open-loop system is usually formulated. In the discrete-time case, on the

other hand, for a wide class of distributed systems, the resulting input operator is bounded on the

usual underlying state space. An unbounded output, or measurement, operator has domain smaller

than the usual open-loop state space.

For continuous time systems, Pritchard and Salamon (1987) have established an abstract

semigroup theoretic framework for treating the linear quadratic regulator problem (control only) for

infinite dimensional systems with unbounded input and output operators. Their approach is based

upon a weak or distributional formulation of the Riccati equations which characterize the optimal

feedback control laws in an appropriate dual space. Curtain (1984) provides a procedure for the

design of finite dimensional compensators for parabolic systems with unbounded control and

observation. In (Curtain and Salamon, 1986) a finite dimensional compensator design procedure

for a wider class of infinite dimensional systems with unbounded input (but bounded output)

including hereditary systems with control delays and partial differential systems with boundary

control is developed. Lasiecka and Triggiani have looked at linear regulator problems for parabolic

(1983a, 1987a) and hyperbolic (1983b, 1986) systems with boundary control and obtained,

among other things, global and local regularity results for the optimal controls and state

trajectories. In (Lasiecka and Triggiani, 1987b) Galerkin approximations and an associated

convergence theory for closed-loop solutions to regulator problems for parabolic systems with

Dirichlet boundary input are studied. A more complete survey of the boundary control literature

including references to some of the poineering work in this area can be found in (Pritchard and

Salamon, 1987).
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In our treatment here, we consider the discrete-time problem (i.e. piecewise constant input and

sampled output). Our interest in the discrete-time or digital formulation is motivated by 1) the fact

that it represents a more accurate or realistic description of how the linear-quadratic theory for

distributed systems would actually be applied in practice, and by 2) how the boundedness of the

discrete-time input operator in the usual underlying state space facilitates the development of an

approximation theory which can simultaneously handle both unbounded input and unbounded

output. Our approach is based upon an application of the theory we developed earlier in (Gibson

and Rosen, 1985 and 1986) for the approximation of optimal discrete-time LQG compensators for

infinite dimensional systems with bounded input and output. Our results are applicable to

boundary control systems in which a restriction of the state transition operator and the discrete-time

input operator are bounded on a space on which the output operator is bounded as well. To

illustrate our approach, in this paper we describe in detail the application of our theory to a one

dimensional heat equation with either Neumann or Dirichlet boundary control and pointwise

measurement of temperature. Elsewhere (see Gibson and Rosen, 1987) we have applied our

results to develop approximation schemes for the computation of optimal LQG compensators for

flexible structures (i.e. Euler-Bernoulli beams) with shear force input at the boundary and a

pointwise measurement of strain.

An outline of the remainder of the paper is as follows. In Section 2 we describe an abstract

framework for the study of boundary control systems and their discrete-time formulation. In 'S

Section 3 we review the LQG theory for infinite dimensional discrete-time systems and associated

abstract approximation results. In the fourth section, we discuss spline and modal subspace based

approximation schemes for the heat equation example. Section 5 contains some concluding

remarks.

2. The Boundary Control System and its Discrete-Time Formulation

We employ a semigroup theoretic formulation that has been used previously for a class of

abstract boundary control systems. See, for example, (Curtain and Salamon, 1986). Let W,V and

H be Hilbert spaces with W and V densely and continuously embedded in H. We



consider boundary control systems of the form

(7.1) '% (t) =Aw(t), t > 0

(2.2) w(0) =w 0

(2.3) Fw(t) = v(t), t _> 0

(2.4) y(t) = Cw(t), t _ 0

where A e Z (W,H), the boundary input operator r is an element in Z(W,Rm) and the output

operator C is an element in Z(V,RP). Note that the operator A need not be the Laplacian. Our

choice of A to denote a general, most often differential, operator satisfying the conditions set forth

below is consistent with the notation used in earlier treatments of boundary control systems

elsewhere in the literature.

We assume that 1) F is surective and its null space, v( = {(p e W: Flp = 0}, is dense in

H, 2) the operator C1, defined to be the restriction of the operator A to IL(I-), is a closed operator

on H and has non-empty resolvent set and 3) for each T > 0, all w0 6 W, and v e C'(0,T; Rm)

with Lw0 = v(0), there exists a unique w E C([0,TJ; W) fl Cl([0,TJ; H) which depends

% continuously on w0 and v and which satisfies (2.1) - (2.3) for each t e [0,T]. It then follows (see

Hille and Phillips, 1957) that the operator C : Dom (C) c H -+ H given by C1p = Ap for (p _

Dom(C() = 2(I) is the infinitesimal generator of a C0 semigroup, { ((t) : t 2t 0), of bounded

linear operators on H.

Define the space Z as the dual of Dom(CA*) where the norm on Dom (Ct*) is taken to be the

graph Hilbert space norm associated with the operator Qt *. Then H is densely and continuously

embedded in Z and {T(t) : t _> 0) can be uniquely extended to a C0 semigroup of bounded linear

operators on Z. Its generator is the extension of the operator 1 to an the operator (- in Z(H,Z)

given by ( p p)(iV) = <(p, C I>H for (p e H and 4f £ Dom(C*).

Since F was assumed to be a surjection, it has a right inverse. Let [': Rm -+ W be any right

inverse of F. Since Dom ( 1 ) =Rm, we have F+ e Z(Rm, W). For v e R', we define

n3 e Z(Rm, Z) by 3v = (A - Q) 11 v. If r' and F are two distinct right inverses of F then
1 2

r( F + F+ ) (1-). Since j coincides with A on 2(1) ,it follows that the operator ?3 is
1 2

3



well defined. It can be shown (see Curtain and Salamon, 1986) that for each w0 E H and v e

L2(0,T; Rm) there exists a unique w E C([0,T]; H) fl H' (0,T; Z) which depends continuously on

w0 and v and which satisfies

i(t) = ew(t) + ?3v(t), t > 0

w(O) = w o

in Z. The function w is given by
. t"

(2.5) w(t) = T'(t)w 0 + f T (t - s) 3v(s)ds, t > 0
0

and is referred to as a weak solution to the boundary control system (2.1) - (2.3).

The discrete-time formulation of (2.1) - (2.4) is found by considering piecewise-constant

controls of the form

(2.6) v(t)=uk, te[kt,(k+ 1)), k=0,1,2....

where t denotes the length of the sampling interval. Let Wk = w(kt), k = 0,1,2.... where w(.)

is the unique weak solution to (2.1) - (2.3) given by (2.5) corresponding to w0 e H and input v

given by (2.6). (We note that with piecewise constant input of the form (2.6), the solution w is in

fact a strong solution on each subinterval [kt, (k+l),t].) For each k = 0,1,2,... define

zk e C([k'r, (k + 1),r]; I-) by zk(t) = w(t) - Uk, t F [kr, (k + 1),c]. Then

Zk(t) = w(t) = Cw(t) + n uk

= CQzk(t) + (CA+ n3r-+uk

= CQzk(t) + A "uk t e (kT, (k + 1)1t],

z(k T) = wk - uk

Therefore

4
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Wk+= Zk((k+l)t) + -Uk

=TxC)(wk - Suk) + f Y'(s) A '+Uk ds + '+Uk

= T(t)wk + (I - "(t)) r+Uk + J "(s)A-'Ukds,
0

or

Wk+l=Twk+Buk, k=0,1,2,...

WeH

where T e Z (H)and B e Z (Rm, H) are given byT = (') and B = (I - T( 1))-+

f" T(s)Ar~ds respectively.
0

We note that as in the case of the continuous-time input operator 13, the discrete-time input

operator B is well defined and does not depend upon a particular choice for I". Indeed if B1 and

B2 are the input operators which correspond to the choices + and 172+ then for u e Rm we have
1

(B 1 - B2)u = (I -T(C))( F + - F 2+)u + f' (s)A (71+ - r2+)uds.! 0

But (1 + - F+ )u 7 ',(") = Dom(Q) and therefore
1 2

T(s)A(r- - 11 )uds T (s)C (r'- - I )uds

0 0

ds 1 2 1 2

In addition, if I" is chosen so that It (1" ) c 7L (A), B takes on the particularly simple form B =

! (I- T"(r))l "+ . It is worth noting that a simple calculation reveals that

B- JT (s) nds
0

in agreement with the standard technique for obtaining the discrete or sampled time formulation of

a continuous time system in either a finite dimensional or bounded input setting.

5



It is our intention here to apply the approximation theory we developed earlier in (Gibson and

Rosen, 1986) for the design of optimal discrete-time LQG compensators for infinite dimensional

systems with bounded input and output operators. We therefore require the additional assumptions

that 4) T = T(@) e Z(V) and 5) R(I " ) c V. Although not all boundary control systems we

might formulate would satisfy these conditions, there are many interesting and important systems

which do (see, for example, Section 4 below and Gibson and Rosen, 1987). In this case, the

control system (2.1) - (2.4) takes the form

(2.7) wk+1 = Twk + Buk, k = 0,1,2,...

(2.8) wo eV

(2.9) Yk = Cwk, k = 0,1,2.

3. LOG Theory for Infinite Dimensional Discrete-Time Systems and Finite

Dimensional ADnroximation

3.1. The Infinite Dimensional Probelm

The discrete-time linear-quadratic regulator problem for the boundary control system (2.1) -

(2.3) is:

Find u* = WOOk;k= 0 8 ,t2(0, -c; Rm) which minimizes the quadratic performance index

J(u)= <Qwk, wk>V + uk R
k=O

where Q E ,(V) is self-adjoint and nonnegative, R is a symmetric positive definite mxm matrix

and the state w = (wk ° evolves according to the recurrence (2.7), (2.8).
Ok-O

An optimal control exists for each initial condition w0 if and only if the operator algebraic

Riccat equation

(3.1) 1 = T*(r - [IB(R + B*rIB)'1B*)T + Q.

6



has a bounded nonnegative, self-adjoint solution Fl. In this case, the optimal control has the

feedback form uk = -Fwk where F = (R + B* rIB)'IB*HT. A control (sequence) u is admissible

for the initial condition w0 if the corresponding J(u) is finite. If there exists an admissible control

for each initial condition, then (3.1) has a bounded nonnegative, self-adjoint solution. If each

admissible control for each initial condition drives the state to zero asymptotically, then there exists

at most one bounded nonnegative, self-adjoint solution to (3.1). The optimal trajectory w =

{Wk k evolves according to w* = Skw 0 , k = 0,1,2,..., where the closed loop state transition
k-0 k

operator S e Z(V) is S = T - BF. If Q is coercive, then S has spectral radius less than one and is

uniformly exponentially stable. From the finite dimensionality of the control space we obtain

(3.2) Uk = <fwk >V, k 0,1,2,...

mwhere f (f )T e x V is called the optimal functional feedback control gain.
j=1

The results stated here for the optimal linear-quadratic regulator problem are summarized from

(Gibson and Rosen, 1985).

When only a finite dimensional measurement y = (Yk} k = 0 of the infinite dimensional state w

is available (recall (2.9)), a state estimator or observer is required. For a given input sequence u

and corresponding output sequence y, the optimal LQG estimator is

(3.3) w' k+ Bk+F{k-C,} k -- 0,1,2 ....

(3.4) w' e V

where the optimal estimator or observer gain F e Z(RP,V) is F = T I C*(R + C EI C*)1 with

1 1 e Z(V) the minimal, self-adjoint, nonnegative solution (if one exists) to the operator algebraic

Riccati equation

(3.5) =T( 1- i C*(R + C ^ C*)'IC H )T* + Q.

Since F E (RP,V), it has the representation

7
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• p
whereF = ft f Ty .. fp) E P

where f = (f 1, f 2'-1 f) E X V is called the optimal functional observer gain.
j=l

The operator Q , Z(V) is self-adjoint, nonnegative and the pxp matrix R is symmetric,

positive definite.

In a stochastic setting, the operator Q and the matrix R are, respectively, the covariance

operator and covariance matrix for uncorrelated, zero-mean, stationary, Gaussian white noise

processes that force the state and corrupt the measurement. In this case, if Q is trace class, (3.3),

(3.4) is the infinite dimensional analog of the discrete-time Kalman-Bucy filter. In a strictly

deterministic setting, Q and R are assumed to be determined via engineering design criteria

such as stability margins, robustness of the closed-loop system, etc.

Replacing operators in the control problem with the adjoints of the appropriate operators in the ,

estimator problem yields the usual duality between the LQG optimal control and estimator

problems. Hence sufficient conditions for existence and uniqueness of solutions of (3.5) and the

closed-loop estimator stability properties are analogous to the results for the control problem. In

particular, if ek = wk - wk, then ek = 9k e0, k = 0, 1,2, ... , where 9 = T - FC, and a sufficient

condition for § to be uniformly exponentially stable is that Q0 be coercive.

The optimal LQG compensator consists of the state estimator in (3.3) and (3.4) and the control

law

(3.6) Uk*= -F k, k =0,1,2,...

The resulting closed-loop system is given by

Vlk Akqfo ,  k =0, 1,2,....
k=p

where VUlrk = (Wk, wk)T with (Wk}k. 0 the state trajectory that results from the input (3.6)

and A e Z(VxV) is

8
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FC T-BF-FC]

It is easy to show that the spectrum of A is given by (A) = c(S) U a(g), so that the stability of

the closed-loop plant-compensator system is determined by the stability of the plant with full state

feedback and the stability of the estimator error.

3.2. Aw1ronaion

For each N = 1,2,..., let VN be a finite dimensional subspace of V and let PN be a bounded

linear mapping from V onto VN (for example, the orthogonal projection with respect to either the V

or H inner product). Let TN, QN, QN e Z(VN), BN e Z(Rm,VN) and CN F Z(VN,RP) and set

FN=(R +B rNBN)-IB* flT

and

FN TN UNC (R +CNUN C*).

where I-N and rIN are the minimal, self-adjoint, nonnegative solutions (assuming that they exist) to

the finite dimensional operator algebraic Riccati equations

(3.7) FIN = TJIN- rNBN(R + B I=rNBN) ' I BIJ-N)TN + QN

and

(3.8) 11I = TN( TIN- II C" (R + CNI N C)-CN rN)T*+ QX

respectively. The approximating optimal compensator is given by
4.**

.  
Op.

u =-Fw .k =0,1,2,..
N~k N Nk

9



where w = ( o is determined according to the approximating observer

w N = PN W'O E VN .

The measurements YN are given by yr x W~ , ,12.. hr

*W k = 0,N 1,,... ,2...whr

WuJC+l =TN~k - B u* .k=012..
Nk

WN, 0 WO W 0
'Me resulting closed-loop+ system is given by CN*k N, k =0,l,2... where

Kk/.. = (WN.k, wNk)T and 'N e Z (VxV N) is given by

T -BF N

(3.9) "N '  N N  rF 'C.

Let SN =TN - BNqF N and SN = TN " FNqCN and assume that PN I strongly on V as

N o.Assume further that TNPN -4 T, TNPIN -+ T*, QNN---- Q and )r -- Q

N QN1 QO _

strongly on V and that BN --+ B and CNP N - C in norm as N -- .If the pairs (TN, BN)  ,
and (T are uniformly exponentially stabilizable and the pairs TN Q) and (T. N .

detectable (see Kwakernaak and Sivan, 1972) then there exist unique, self-adjoint, nonnegative .

solutions 17N and rIN to the algebraic Riccati equations (3. 1) and (3.5). If FIN and rIN are"

bounded from above uniformly in N, then li NPNq and rINP N converge weakly to 1-I and I,

respectively, as N -4

If, in addition, Su and Sl are uniformly exponentially stable, uniformly with respect to N,

NN N
Ap

then I-INP N and sed converge strongly. Weak convergence of sP to yields strong

convergence of FNPN to F and SNPN to S. If lNPN converges strongly then FNP N  F in

l 1

• • • ",["FNC" -BFN• 1
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norm. Weak convergence of rINPN to r yields weak convergence of FN to F and SNPN to

S. When rINPN -- 1- strongly, then FN - F in norm and SNPN --" S strongly in V as

N - *. Finally, if VN is the mapping of VxV onto V>. 'N given by IPN(W1, w2) = (w 1,

PNw 2), then lNPN -* H weakly or strongly is sufficient to conclude that " 460N --+ A weakly

or strongly depending only upon whether rlNPN - I weakly or strongly as N - -0. Under

appropriate additional hypotheses on the spectral properties of the open-loop system and on the

approximation scheme, it is possible to show that 16NN converges to A4 in norm. (We have been

able to obtain such a result only for modal approximations.) Norm convergence of the closed-loop

state transition operators is sufficient to conclude that uniform exponential stability of , implies

uniform exponential stability of 'AN for all N sufficiently large (see Gibson and Rosen 1986).

In practice, the finite dimensional approximating subspaces VN are often constructed using any

of a number of common finite element bases, e.g. polynomial and hermite spline functions, mode

shapes, orthogonal polynomials, etc. For the discrete-time boundary control systems of interest

to us here, the approximations to T and B, TN and BN, are obtained by approximating the

continuous time semigroup, (J'(t) : t 0), by a semigroup of bounded linear operators on VN,

T{IN(t): t > 0). In fact it is the infinitesimal generator Q of the semigroup [{'(t): t _ O)that is

approximated by a bounded linear operator CN on V.iwith (TJN(t): t ! 0} then being defined by

SN(t) = exp (C'Nt), t _ 0. With TN = TN(T) and BN = (I - TN(@))PNI + + F ,rN(S)PNAIr+ds, the0

required convergence can usually be proved using the Trotter-Kato semigroup approximation

result (see (Kato, 1966) and (Pazy, 1983) ). The approximations to Q, Q and C, QN, QN and

CN, respectively, typically are taken to be QN = PNQ, QN = PNQ and CN = CPN.

Let N) ( ,,l H denote a basis for V and set ON = ( (pN ,(pN... , N ) T V
1 2 14 j=1

Adopting the convention that [LI denotes the matrix representation with respect to the basis

((pN) l' for a linear operator L with domain and/or range in VN, we find that
". { j } l t

[FNi =(R= + N e [B '[ T 0 N[Trj and [ [T . -N \.T(R + [CNI

* [CTlNhr J) an N toIC
E)b N[CN ]T)'I where ONl and 1 N are the unique, symmetric, nonnegative solutions to the

nN x nN matrix algebraic Riccati equations

alvj
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(3.10) N= [TN]T (8 N - N[BN](R + [BNI T e N[BN])'I [BNIT 0N)[TN]

+ MN[QNI

and

(3.11) eN = [TN]( (E) _- EN[CN]T(R + [CNIEN[CNIT)-l[CNIeN)[TNIT

+ [QN(MN) -l

d 
r,

The matrix MN is the nN x nN Gram matrix <(DN, ((DN)T>v

If WNk=(4))T W kwith W* e Rz ,then u* =-[FN] N, k=0,1, 2 ... with
N ,k N,k

= [TNI +[BNIU +,+[FN](Y, -[CNI W , k =0,1,2,...
N,k 14'k 1 ,k N k

W*" (MN)-t < (DN, Wo>v
N,O 0

m
The approximating optimal functional feedback control gain, f 1 (f9 fl,*... f2)T E x VN

j=1

are given by ft4 = [FNI(MN)-IN and the approximating optimal functional observer gain

=(f , f'!, .... fT p x VN by f = [FNI T( N . If lNPN - rI weakly (strongly)
j=1

then fl -+ fi, i = 1,2,..., m weakly (strongly) in V. If -INPN -- I weakly (strongly) then

f ' fi J = 1,2,..., p weakly (strongly) in V. If the injection V c H is compact, then -- fi,f f
i =1,2,..., m and f -- .i =1,2,...,p strongly in H if FINPN and INPN converge only

weakly.

4. Examnles and Numerical Results

We consider the one-dimensional heat equation a

(4.1) (t,x) = a-(t,), 0<x< 1, t>0,

12
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where a > 0, with the homogeneous Dirichlet boundary condition,

(4.2) w(t,0) = 0, t > 0,

and either the Neumann boundary control

ax
(4.3) 0w (t,1) = v(t), t > 0,

or the Dirichlet boundary control

(4.4) w(t, 1) = v(t), t > 0,

where v e L2 (0, -c). For output we take a temperature measurement

(4.5) y(t) = w(t, C), t _ 0,

at some fixed point C e (0, 1). Initial conditions for these systems have the form

(4.6) w(O, x) = w0 (x), 0<x < 1

where w0 e L 2 (0, 1).

Although the two control systems above appear to be similar, they are, in fact, quite different and

must be treated separately. We begin with the more straight forward of the two, Neumann boundary

control. Let H = L 2 (0, 1), V = H1 (0, 1) = {q e HI(0, 1) : (p (0) = 0} andL

W = H2 (0, 1) f" HI (0, 1). With H endowed with the usual L2 inner product, V with the inner
L

product < q, V1 >, = f0  Dp DW and W with the inner product <P',>w = to DJ DJ xV, we
j=l

have the continuous and dense embeddings W c V c H c V' c W'. Define A e Z (W, H), r P z (w,

R1) by A p = a D29, Fp = D(p(1) and Cy = (p(C) respectively. With these definitions the boundary

13



control system (4.1) - (4.3), (4.5), (4.6) has the form (2.1) - (2.4). The operator C: Dom (Q) C

H-4H is given by Cup = a D 2(p for (p e {Cp e H2(0, 1): (p(0) = Dcp(1)) = 01. It is densely defined,

negative definite, self-adjoint and it is the infintesimal generator of a uniformly exponentially stable

analytic semigroup (T(t): t >- 0) of bounded, self-adjoint linear operators on H. Also, { (t): t >

0) is a uniformly exponentially stable, analytic semigroup of bounded, self-adjoint operators on V

with generator Ci given by Cup = CQp for y E [ 9 e H3 (0, 1): qy(0) = D(p(1) = D2p(0) = 0).

Choosing r+ e Z (RI, W) as (F[+u)(x) = xu for x e [0, 1], we have t( 1-'+ ) c V, 1P.( I'+) c JL (A)

and that conditions 1) -5) given in Section 2 are satisfied. For the optimal control and estimator

problems, we take Q = q, =q I, R = r and = " where I is the identity on V, q, q _> 0 and r, :"

> 0. The uniform exponential stability of the semigroup (T(t): t > 0) on V implies that the algebrai

Riccati equations (3.1) and (3.5) admit unique bounded, nonnegative, self-adjoint solutions El and tI

respectively. The optimal control (3.2) takes the form
1

(4.7) u= f Df Dw k = 0,1,2,...

0

where the optimal functional feedback control gain f and the optimal functional observer gain

f are elements in HI(0,1).

We construct an approximation scheme using a linear spline based Ritz-Galerkin approach. For

each N = 1,2,... (pN)N denotes the usual linear spline or "hat" functions defined on the interval
J 1 j0

[0,1] with respect to the uniform mesh (0, 1/N, 2/N,..., 1}. We discard the element centered

at x = 0, (pN, set VN = span {(pN) N and choose P to be the orthogonal projection of V onto VN

with respect to the V inner product. Hence V. is an N dimensional subspace of V.

For (p e Dom (Qt), I Cplt : alplv 2- al(pl and therefore 0 e p(C-) and C- 1: H -- Dom(Ct)

satisfies Q-1PIv a-TIqI for p e H. We define CIN: VN - VN as the inverse of the operator

C-I1 = pNC,-1 restricted to VN. The operator -W" I is positive definite because
N N

<CC-1 (pN,gN>V= asIprl 2 for yNe VN , and itis self-adjoint since< CQ- IN, VN>V=
N H N

<PNC f -1 ' P IIN>V <'-1 ' N>V = a-1 <tPN, VN>H • Hence the operator C.N is well defined

and self-adjoint. For (PN 8 VN and WN = N(PN, the estimate

14
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< ANPN t'PN>V - '< N,INC 'N>V N-a- Hl 12

2 -
< -agi-Q IJINiV -a IPNCU'C11N12  H aIQCN!V

-a I NIV

implies that CN is the infinitesimal generator of a C0 semigroup { T"N(t) t > 0) of bounded,

self-adjoint linear operators on VN satisfying I'XN(t)l e- a t , t >_ 0.

It can be shown that a<(p, Vr>v = <(-C) 1/2P, (_C1) 1 /2W>H " It then follows that the matrix

representation for the operator (N with respect to the basis {p } is [IN I

-a< pN,>, (PN < qPN, q N>V .This agrees with the system matrix derived by a standard

Ritz-Galerkin finite element approach. Note that even though CN is defined to be the inverse of the

operator PN(C) "1 restricted to the space VN, computing its matrix representation does not require

either Q Ct 2 or C-1 explicitly. In general, the same approach can be used to obtain an operator

representation for the Ritz Galerkin approximation to any self-adjoint coercive operator.

Let IN denote the interpolation operator from V onto VN defined by (IN p)(j/N) =p(jIN), j = 1,

2,..., N. Then for p e W, elementary approximation properties of linear interpolatory spline

functions (see (Schultz, 1971)) imply

I - )(Plv <l (j N - i)(P' < L ID2 OH

and therefore, since W is dense in V, that PN - I strongly on V as N-- -.. Also, it follows that

U1 = pNr-.. C-1 strongly on V as N-+- . If we define TN = TN(t), then the Trotter-Kato
N

approximation theorem yields that TNPN -- T strongly on V as N-) -c and, since T* = T = "(-)

and T* = TN =TN(T) that TNPN -- T* strongly on V as N- .
a.m

Since (I"+ ) c VN (recall that (lu)(x) = ux, 0!5 x <1), we define the approximating input

operators BN by BN = (I - TN(t))1+ and set QN= qI, QN = I and CN = C. The strong convergence

of PN to the identity and TNPN to T together with the finite dimensionality of the domain of B and the

"a range of C are sufficient to conclude that QNPN -- Q, QNPN -4 Q strongly on V and that BN -- B

and CNPN -4 C in norm as N --- -c.

The uniform exponential stability of the semigroups { TN(t) t > 0) implies

15



(4.8) ITk ,v = I(T* )klv _<r, k=0,1,2....
SN

with r = e -a < I. Consequently the pairs (TN.BN) and (TN, C-) are uniformly exponentially

stabilizable and the pairs (TN,QN) and (TN, QN) are detectable. It follows that there exist unique

self-adjoint, nonnegative solutions HN and FIN to the finite dimensional algebraic Riccati

equations (3.7) and (3.8) respectively. The uniform exponential bound (4.8) with r < 1 imples that

the zero control yields a uniform upper bound for IIN and 1"1N and therefore the uniform

exponential stability of SN = TN - BNF and SN = TN FNCN We conclude that I'NN and

1NPN converge strongly in V to I-N and FN, respectively ,and that FNPN and FN converge to F

and F in norm as N - -.. The approximating optimal functional feedback control and observer
AA

gains, fN and , converge respectively to f and f in the H1 norm as N -- +o.

In implementing the approximation scheme just outlined above, eigenvector decomposition of

the associated Hamiltonian matrix was used to solve the matrix algebraic Riccati equations (3.10) and

(3.11) (see Pappas, et. al., 1980). The required matrix exponentials also were computed using

eigenvalue/eigenvector decomposition. All calculations were carried out via Fortran codes on an

IBM PC AT. We set a =1, q = q = r = :'= 1.0, = /2 and T =.0l and obtained the

functional gains plotted in Figs. 4.1 and 4.2. We plot fN and f. as well as DfN and D f. to exhibit a

the HI convergence. We note that Df (or DfN) appears as the feedback kernel in the optimal control

law (4.7).

We also simulated the operation of the closed-loop system with an approximating compensator.

Using a 20 mode model for the infinite dimensional system and N = 12, we computed the closed-

loop spectrum of the approximating compensator (i.e. the eigenvalues of the operator /6N given by

(3.9) with N = 12). These eigenvalues along with the first 20 open-loop eigenvalues (i.e. the first

20 eigenvalues of the operator T = T(r)) and the approximating closed-loop control and observer

aeigenvalues are tabulated in Table 4.1 below. Table 4.1 reveals that the last seven open-loop

eigenvalues remain essentially unchanged in the closed-loop system-i.e. these modes are neither

cintrolled nor observed by the finite dimensional compensator. Also, as one would expect, (4N)

consists essentially of the union of a(SN), G(SN) and the eigenvalues corresponding to the

16
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uncontrolled/unobserved modes of the open-loop system.

It is worth noting that the scheme we have outlined above for the Neumann boundary control I

problem is the same scheme that one would ordinarily use if the problem were formulated in the space

H - i.e. if the output operator C was bounded on L2(0,1) (see Gibson and Rosen, 1986). This is

possible primarily because the space V = HL(L) is the natural energy space for the underlying

homogeneous or open-loop system. Consequently, the inherent self-adjointness and coercivity in the

problem is preserved when it is formulated in the stronger space. In the case of Dirichlet boundary

control, the situation is quite different.

For the Dirichlet boundary control system (4.1), (4.2), (4.4) - (4.6), we choose the spaces H, V

and W and their corresponding inner products to be the same as they were in the Neumann case.

The operators A e Z (W,H) and C P Z (V,R t ) also remain unchanged, however now we have

F e Z(W,R') given by Fp = (p(l). It then follows that the operator C?4 Dom(C4) C H -4 H is given

by C p = aD 2 p( for e s H2(0,1) f" H (0,1). It is well known that Qt is densely defined, negative
0

definite and self-adjoint and that it is the infinitesimal generator of the uniformly exponentially stable p

analytic semigroup {( "(t) : t > 0) of bounded, self-adjoint linear operators on H. However this

time the operators 9T(t) for t > 0 are neither self-adjoint nor a semigroup on V. Indeed, since

A3,("(t)) c H1 (0,1) for all t > 0 and H (0,1) is a closed proper subspace of HI (0,1), '"(t) is not p
0 0 L

strongly continuous in the V-norm at t = 0. (The fact that our general framework requires
1I4,

F" = 1 and t' (I-+) c: V precludes our choosing V to be H (0,1).) On the other hand,
0

{(t) : t-> 0) an analytic semigroup implies (see Pazy, 1983) that there exists a constant t > 0 foi p

which lQ'2"(t)H < I.1 fort >0. Consequently, if we define T = ;('t), then it follows that

T e Z (V) and moreover, that

ITk(PI - - a-l<CAr(kr)p,W(kt)q> _ a-1 I I(k)pIH IT(kr)TIH

-ak't 2 Le-akt ",

- PH <' Vak-r akxt

17 %4.~
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for k = 1,2,... and (p e V. We have therefore

(4.9) ITkIv = (T*)kv Mrk, k = 0,1,2,...

where M >0 and r < 1.

We again choose 1"+ e Z(R,W) as (1-'+u)(x) = xu for x e [0,1]. Then !,(1' +) c R(A) and we

have reformulated the boundary control system (4.1), (4.2), (4.4) - (4.6) in the general form of (2.1)

- (2.4) and conditions 1) - 5) are satisfied.

We formulate the optimal control problem with the performance index

J(\ 2..:J(u) = q <w k 1w k > H + ruk

- where q _ 0 and r > 0. That is, we take Q to be the bounded, self-adjoint nonnegative operator on

H 1L(0, 1) given by (Q)(x) q Jp(z)dzdy and R to be r. For the estimator problem we set
A A % A

Q=qlandR=r with q: 0 and i'> 0.

The uniform exponential bound (4.9) implies the existence of unique, nonnegative, self-adjoint

solutions Hl and 1I to the algebraic Riccati equations (3.1) and (3.5). The optimal control is again of

the form (4.7) with the optimal functional gains f and f in HL.

The fact that { T(t) : t z- 0) is not a semigroup on V precludes the use of a semigroup - theoreti

approach to approximation. We therefore employ modal subspaces and approximate the open-loop

state transition operator T directly as a bounded linear operator on V.

For each N = 1,2,... let VN = span (q)N . where for x e [0,1], (p0(x) = x and (pj(x) = sinjlTx,

j = 1,2,...,N. Let PN denote the orthogonal projection of H = L2(0,1) onto span (PjI N
%1

and let PN denote the orthogonal projection of V onto VN. Using the fact that V = H(0,1) 9 (p0 , it

is not difficult to see that PNcp = (p(l)(P0 + PN(9P - (p(l)(P0 ) for (p e V and hence, via elementary

properties of Fourier series (see Tolstov, 1962), that t(PN - )(PIV = t(PN - I)(qP - Vp(l)t 0)fV - 0

as N -*for each (p E V.

We define TN E Z (VN) by TN = PNT. Then, since T,.(T) = T' (T(-c)) c H1 (0,1),
0

18
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N

for AVN I = 'N 94 F VN we have

N

TNIN =PNTWN = PNT()VN = PN.(t)N =()pNN= { N + -( - 1)  0 aj2n2 %
j=l j t

It follows that T = PNT* , IT v  I(T)klv <Mrk, k=0,1,2,... with M >Oand r< 1 independent

of N, and that

* I(TNPN - T)PIV < I(PNTPN - PNT)(PIV + '(PN - I)T(pI v

- MrI(P N - D1 OV + i(PN - I)T(Plv -40

as N--> for (p , V. Similarly, T*P -- T* strongly on V as N -+.

The approximating input, output, and state penalization operators BN, CN, QN and QN take the

form

,,.,,. Bu + 2(-1) j a.2n-

NU = (I - TN)F+u =POu + e- a u
j=1 j.t (i

CN = CQN = qPNQ and QN = q I. Reasoning as we did in the Neumann case, the approximating

algebraic Riccati equations (3.7) and (3.8) admit unique, nonnegative, self-adjoint solutions UN and

rN respectively, 1INPN -+ 171 and IINPN -* 1- strongly on V and FNPN -4 F and FN -F F in norm

as N -- c. The approximating functional feedback control and observer gains fN and fN converge

to f and f respectively, strongly in H1 as N -- o*.

With a = 1.0, q = q = r = 1.0, F = 5.0, F = 2/2 and t = .01 and the scheme outlined above we

obtained the approximating optimal functional feedback control and observer gains plotted in Figs.

4.3 and 4.4 below. The first 12 open-loop and the approximating closed-loop control and observer

eigenvalues for N = 12 are tabulated in Table 4.2.

Table 4.2 reveals an interlacing of the closed-loop control and open-loop eigenvalues. That is,

the closed-loop control eigenvalues (i.e. the elements in the spectrum of S) are alternately more and

less stable than the corresponding open-loop eigenvalues. We also have observed this phenomenon

in other numerical studies we are carrying out involving LQG boundary control for flexible

19
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structures. In additon, in the Dirichlet boundary control system discussed above, if Q is chosen as

the identity operator on V = HL(0, 1), virtually all of the closed-loop control eigenvalues are less

stable than the corresponding open-loop eigenvalues. It is clear that this non-standard behavior

results from the presence of the one dimensional subspace represented by T(F+). Indeed, the

behavior of the closed-loop spectrum in the case of Neumann boundary control is as would be

expected. We feel that what we are seeing can most likely be explained via infinite dimensional

analogs of existing results relating the asymptotic properties of the closed-loop spectrum of a linear

regulator and the zeros of the corresponding open-loop transfer function (see Kwakemaak and Sivan,

1972 and Harvey and Stein, 1978). However, as of yet, we have been unable to establish this

conjecture satisfactorily and we consider it to be beyond the scope of this paper, which is primarily

concerned with approximation. We leave it as an interesting open question.

5. Concluding Remarks

We have developed a framework for the finite dimensional approximation of optimal discrete-time

LQG compensators for distributed parameter systems with boundary input and unbounded

measurement. Our theory applies to the class of boundary control problems which can be formulated

in a state space in which both the discrete-time input and output operators are continuous. We have

used a functional analytic treatment to develop a convergence theory and have demonstrated the

feasibility of our approach via examples involving either the Neumann or Dirichlet boundary control of

a one dimensional heat equation with point measurement of temperature. We have shown that while

both problems outwardly appear to be quite similar, they in fact require very different approaches to
1%J

approximation. Also in the Dirichlet case the observed behavior of the resulting closed-loop spectrum

is, in some ways unexpected and its explanation remains open.

Finally, we have been looking at the application of our schemes to LQG problems for flexible

structures with boundary inputs and unbounded measurement and systems with control and/or

observations delays. We have been considering vibration suppression for cantilevered beams via

shear or moment inputs at the free end and pointwise observation of strain or acceleration. These

studies are currently underway with the results to be reported elsewhere.

,.
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Open-Loop (6 12) a(S 12) a(S 12)

1 .9975 .9968 .9968
2 .9780 .9780 .9778

.9769 .9768
3 .9402 .9408 .9387

.9371 .9371
4 .8861 .8872

.8778 .8775 .8798
5 .8188 .8194

.7982 .7985 .7998
6 .7419 .7414

.7026 .7019 .7030
7 .6590 .6573

.5960 .5921 .5946
8 .5740 .5718

.4891 .4769 .4804
9 .4901 .4875 .441

.4433 .4412
10 .4104 .4041

.3675 .3675 .3682
11 .3368 .3341

.2772 .2763 .2768
12 .2711 .2705

.2145 .2129 .2133
13 .2139 .2134

.1811 .1811 .1816
14 .1655 .1663
15 .1255 .1260
16 .0934 .0933
17 .0681 .0677
18 .0482 .0483
19 .0341 .0340
20 .0235 .0236

Neumann boundary control; simulation results

Table 4.1
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"W' %

Open-Loop G(S12 ) 0($12)

1 .90601806 .90569591 .78573771
2 .67382545 .68243047 .57981918
3 .41136911 .40961171 .40082268
4 .20615299 .20758391 .20936323
5 .08480497 .08447005 .08636884
6 .02863695 .02873534 .02892353
7 .00793790 .00791793 .00792193
8 .00180617 .00180978 .00178763
9 .00033753 .00033682 .00033414
10 .00005172 .00005179 .00005162
11 .00000651 .00000650 .00000654
12 .00000067 .00000067 .00000068
13 .00000000 .00000000

%

4,,

Dirichlet boundary control; open and closed-loop spectrum

Table 4.2 "

a,"

aM

a.%
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ABSTRACT
This paper treats discrete-time LQG optimal x(t) = AX(t). t > 0. (2.1)

control of flexible structures with boundary rx(t) = u(t), t ) 0, (2.2)
control and what normally are unbounded measurement x(O) = (2.3)
operators. The application of recently developed 0
approximation theory for infinite dimensional
discrete-time LQG problems to the problem here is y(t) - C x(t), t 0, (2.4)

discussed, and a numerical example is presented. where A c L(W.X). r C L(W.R
m
), C c L(V.R ) and

I. INTRODUCTION x0 c X with X, W and V Hilbert spaces. We assume
Recently, approximation theory has been deve- 0

loped for the linear-quadra, tc-Guassian (LQG) that W and V are densely and continuously embedded
control problem for infinite dimensional systems in X; that the operator r is surJective and its null
with bounded Input and output operators, and the
application for optimal digital control of flexible space. N(r), is dense in X; and that the operator

structures, diffusion processes and time-delay A:Dom(A) c X - X. defined to be the restriction of
systems has been demonstrated in numerical examples A to N(r) generates an Co-semigroup (T(t): t ) 0)
(see [3.4.51). In the corresponding continuous-
time control problem, the requirement that the of bounded linear operators on X.

% iput operator be a bounded operator from the
finite dimensional control space Into the infinite We treat the unbound input by rewriting the
dimensional state space almost always eliminates
boundary control of distributed systems. However, boundary control system (2.1)-(2.3) as an equiva-
in discrete-time control with piecewise constant
inputs, the input operator representing a boundary lent evolution system in a space Z' larger than X,

control usually is bounded. This makes the theory and then considering weak, or mild, solutions (see
developed in [3] and [4] applicable to boundary [2] for this approach). To construct Z we begin

control of distributed models of flexible struc-
tures. An Important feature of the approach in with the space Dom(A*) endowed with the graph
this paper Is that we accommodate both boundary filbert space norm associated with A*. We then
control and a normally unbounded measurement opera-
tor by working the problem in a Hilbert space (the define the dual of Dom(A*) to be Z. It can be
space V in the following sections) with stronger
topology than the natural energy space (the space X
in the following sections). This trick appears to in Z and that (T(t): t ( 0) admits a unique exten-
simplify many, though not all, problems whose sin to a C -semigroup on Z. The generator of this
continuous-time analogs are much more difficult. 0

extended semigroup is an extension A of A, with
In this paper we sketch the theory for trans- x

forming an abstract boundary control system with A:X c Z Z given by (AP)- <,,A**> for 0 c X and

unbounded measurement operator into a discrete-time c Dom(A*).
control system with bounded input and output opera- r
tors. Also, we summarize the discrete-time LQG wa
approximation theory in [3] and [4], and we give We recall that r was assumed to be onto and
numerical results for control of a flexible beam. let r

+ 
c L(R2,W) denote any right inverse of r.

2. THE ABSTRACT BOUNDARY CONTROL PROBLEM Then for u c R , we define

AND THE DISCRETE-TIME FORMULATION fu = Ar+u - Ar+u. (2.5)

We consider boundary control problems for

flexible structures whose equations of motion, in It is not difficult to show that B Is a well defined

first-order form, can be written abstractly as element of L(RZ), which does not depend on the

partiuclar choice of r
+
. For u a L2 (O'tf; Rm) and

'This research was supported by AFOSR Grant 840309 X 0 X, it can be shown that the function

and A1OSR Grant 840393.
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t to R Consequently, we must consider the .P

x(t) TM ?(t)-)u~~s 26
o t (2.6) discrete-time control system (2.10)-(2.11) in the

2 space V, where both the input and output operatorsIs in C([O.t );X) n H2(O'tf;Z), that x(O) -x 0 and
[ f fO 0are bounded. In addition to x(O) c V, therefore,

x(t) = A x(t) +Bu(t) (2.7) we require that T - T(T) c L(V) and R(r) c V, and

we observe that these conditions imply 8 C L(R.V)
in Z for almost every t C [O.tf]. The x-valued and x(k) c V, k = 0, 1 2.While not all

function x given by (2.6) is called a weak solution
boundary control problems for flexible structures

to the initial value problem with boundary input, satisfy these hypotheses, a large class of impor-

(2.1)-(2.3). tant problems do. This should be evident from the

We derive the discrete-time formulation of example in Section 4.

(2.1)-(2.3) by letting T denote the length of the 3.

sampling interval and considering piecewise COMPENSTORIAN APROXIMTIONCOMPENSATOR AND APPROXIKATION-';

constant control inputs of the form u(t) = u(kT), We present here a brief summary of the linear-
kr 4 t < (k+l)r. k - D, 1. 2, ..... From (2.6) quadratic theory and associated approximation
then, we obtain

results developed in [3], [4] and [5] for infinite

x((kl)T) T x(kT; + B u(kT) (2.8) dimensional discrete-time control systems having '

the form (2.1O)-(2.11), with T c L(V), B c L(R
m
, V) A

where C c L(V, R P)and x(O) e V. The optimal compensator

is an optimal feed back control law together with
T = T(kT) c L(X),

(2.9) an optimal state estimator, or observer. We treat

+ the control problem first. '
B = (I - T(T))rl T(t)a+dt c L(Rm,X).

The linear-quadratic optimal control problem is

to find a control sequence u(,) to minimize the

Note that if r
+

can be chosen so that R(r c N(A), p

then the discrete-time input operator D takes the

simple form B - (I - T)r
+ .

(u) = Z- < Q x(k), x(k) > -u(k)T R u(k) (3.1)
To simplify notation, we will assume henceforth k=o

that the time scale has been normalized to make

T = 1. The discrete-time control system is then
where x(0) c V, x(kj. k = 1. 2......is given by -

x(k~l) = T x(k) * B u(k), (2.10) (2.10), Q C L(V) is nonnegative and self adjoint.

and R is an m x m positive definite symmetric

k_0 .2matrix. For this problem the infinite dimensional p

y(k) = C x(k). (2.11) theory closely parallels the finite dimensional

case. A solution to the optimal control problem

If the initial state x(O) = x c X as we originally exists for each x(O) c V if and only if there

assumed, then each x(k) in (2.10) will be in X. so exists a nonnegative, self adjoint operator 17 c L(V)

that the discrete-time control system does not that satisfied the algebraic Riccati equation

involve the space Z. %

n - T*(n - nB[R + B*nB]-18Bn)T Q Q. (32) -

From here on. we will assume that x(O) Is In

the stronger space V. The reason is that we will If for any control sequence that makes J(u) finite

apply the approximation theory developed in [3] and the state x(k) approaches 0 asymptotically, then

(4] for optimal discrete-time LQG compensator there exists at most one nonnegative self adjoint

synthesis for systems with bounded input and solution to (3.2). When such a solution to (3.2)

bounded output operators to boundary control exists, the optimal control has the feedback form

systems with me.surement operators that are
u(k) - -F x(k). k = 0, 1, 2 ..... (3.3)

unbounded on the space X. While the discrete-time

input operator B is an element in [,(R.X), in where F c L(V.R
m
) is given by

reneral the output onerator C is not bounded from X

* * -. *. ,.".% "- )
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F - [R + B*II] B (3.4) Since L(R V), we can write

the optimal trajectory satisfies y rTy, y c RP. (3.10)

u(k) - sk x(o). k = 0, 1. 2 ..... (3.5) T pwhr 1f f2 C m)  X V is known as the

with S = (T-BF) C L(V) and Juin V,< x(O), x(O)>v. optimal functional estimator, or observer, gain.

A sufficient condition for the closed-loop system

to be uniformly exponentially stable (i.e., for the The optimal compensator consists of the state

spectral radius of S to be less than one) is that Q estimator In (3.7) and the control law

be coercive (i.e., Q ) a > 0).
u(k) = -F R(k). k = 0. 1. 2....... (3.11)

Since F C 
L(V, RO). 

there exists

"m with the control gain F given by (3.4) with the

f - (f f . f ) C Xv solution tc (3.2) and the estimator gain given by
1 2 m (3.8) with the solution to (3.9). The optimal

such that the optimal control law in (3.3) can be closed-loop system then consists of (2.10)-(2.11),

written (3.7) and (3.11). It can be shown that the

spectrum of this closed-loop system is a(T - BF)
u(k) = -<f. x(k) >V' k = 0. 1. 2..... (3.6) a(T - FC).

or [u~)] -f x (), j 1. 2T..-.FC)Th

or [u(k)]j = -<fJ, x(k)>v l J 1, 2 ... m. The Our approximation of the Infinite dimensional
vector f Is called the optimal functional feedback

LQG problem and compensator is based on approxima-
control gain. tion of the operators T, B. C, Q and Q by operators

The optimal LQG state estimator, or observer, on finite dimensional subspaces VN of V. We denote

is by PN the orthogonal projection of V onto VN . and

we assume that PN converges strongly to the iden-

x(k+l) - T x(k) + B u(k) + P [y(k) - xk), tity of operator on V. Also, we assume that there
k - OT 1, + B.C . (3.7) exist operators &N C L() and Nand
k - 0, 1, 2. N' "N' N L(VN an N aN

nonnegative and self adjoint, BN c L(R
m  

VN) and
Here, (0) c V and the estimator gain P c L(R

P  
V) CN c L VN uh t a 'T'P 'Q n

isCN L(VN. R
P
) such that TNPN  T PN QPNndNN

IS converge strongly to T, T*, Q and 0. respectively,

and BN and C P converge in norm to B and C,
CC= TfiC*R + C C']

-  
(3.8) NN

e. respectively as N

with ft in L(V) the minimal nonnegative self adjoint

solution (if one exists) to the algebraic Riccati For each N. we define a finite dimensional LQG

equation problem for the open-loop system with the operators

- T - I -I T B and C and for the operators QN' R in the
11 = T( f 1C*[R Cc]- Cft)T* +N N N N'

where Q C L(V) is nonnegative and self adjoint and optimal control problem and the operators QN and R

and R is a p x p positive definite symmetric matrix. in the estimator problem.

if Q is trace-class, then (3.7) is an optimal t
The solution to this Nth LQG problem requires

Kalman-Bucy filter for (2.10)-(2.11) if a zero-mean, the solution of the two algebraic Riccati equations

stationary white noise process with covariance obtained by replacing the operators In (3.2) and

operator 0 is added to the right side of (2.10) and th
(3.9) with their N approximations:

a similar noise process with covariance matrix R is

added to the right side of (2.11) (see (11. In = - NBN[R BenNBN]
1
B=fN)T (n -T *(n ITB [-B* B ~n T -QN (3.12)

compensator design, Q and A often are chosen to N N N N N N N N N N

produce certain deterministic properties In the TNfl - nC r.cCN -1CNnN)T * (3.13)
closed-loop system, such as stability margins and N N'N N NLNN

robustness; then, & need not be trace-class. Con- The optimal control and estimator gains for the N
th

ditions for existence and uniqueness of solutions problem are given by

to (3.9) are analogous to those for the control

Ricatti equation (3.2). FN - [R * BfNBN]-1 B~nNTN (3.14)

"N ONB "N N , ¢" €"",2''2'



3 . I
.I

N TON +
-  (3.1) w(t.O) -Dw(tO) 0. t 0. (4.2)

pa

2 2 '
If the pairs (TN BN) and (T, a) C0 D w(tl) +E D w(tl) =0. t 0, (4.3)

zable. (3.12) and (3.13) have nonnegative, self o D
3  

El -u(t). t 0, (4.4)

adjoint solutions; if the pairs (Q N' TN) and 0

(&N' TN) are detectable, the nonnegative, self The constants In (4.1)-(4.4) are

adjoint solutions to (3.12) and (3.13) are unique '

and positive definite. Co = .0001, El = .01333.

As In the infinite dimensional problem, we have As indicated by (4.4), the control force u(t) is

functional control gains fN = (f N fN .N f
N
)T c X V applied to the right end of the beam. For the

-NN' NT setup In Section 2, the appropriate spaces are:

and functional estimator gains f (f i.. i

C X VN corresponding to FN and FN. respectively. = (. H
2
(0,1): *(0) - 00(0) - 0) x L21OI (4.5)

We will give the formulas for computing the func-

tional control and estimator gains for the single V = p c H 3(0.1): 0(0) = D1(0) = D 20(1) - 0)

Input/single output case (m = p = 1); the general (4.6)

case is a straightforward extension. When m = 1, x(Hl(ol) 4(0)) - O,

B and BN are elements of V and VN , respectively,
and when p = 1, C* and C* are elements of V and V 4

1, s N VN' W =(,)CX: c0  + Eio e H (0,1).
respectively. The following two formulas then 0

follow from (3.14) and (3.15): (.(0) - D(O) = 0, c0D2*(1) + E7ID2)() =)

f N f (R + B flNBN) T*NHNBN. (3.16) The state vector x(t) is

-N -N (R + C 
C  

-1 T (3.17) w(t)1
* ~ ~ A = R CINC) TNCN. x(t) - w~)J(4.8) a

w(t)

For the example in Section 4, it can be shown + are
and the operators &. r and r are%

that the closed-loop operators for the approxi- '

mating LQG problems are exponentially stable, [o:%49
a .= 1 ( .9

uniformly in N; i.e., there exists constants M > 0 -El D - C0 D4

and r < 1, independent of N. such that

r: R, r(or) = -CoD 0 (1) - EID 3(1), (4.10) a

k. ki k'
SI(TN - BF + I(T - FNC A( Mr (3.18) + R 4

Vk ) 0

This condition and our assumptions about the strong where 0 is the third-degree polynomial that satis-

convergence of the basic operators TN. T;, QN' 6N' fies

B and CN guarantee (see [3), [4]) that the func- 2 3

tional control gains fN and fN converge in V to f 0 0.

and f, respectively. See [31, '[4], [5] for more Hence

details on convergence analysis and numerical

aspects of the compensator approximation discussed rr+: R I R 
1
, rra 1. (4.13)

here, including results on convergence of the .
Now let .%.

approximating compensators and closed-loop systems.

Dom(A) = N(r). A = AIN(r) (4.14)
4. EXAMPLE Nr

Consider the equation of motion for a clamped- and let (T(t): t ) 0) be the semigroup generated

free Euler-Bernoulli beam with Kelvin-Voight on X by A. Then, as in (2.9),

viscoelastic damping

T a T(T) B (I - T(T))0 O. (4.15)
* 'a

w(t.s) + C0 D
4 
w(ts) + El D

4 
w(t's) - 0. (4.1) Note that R(r) c N(A),

0 < - < 1. t ) 0
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For numerical solution of the LQG problem, we

used two schemes to approximate the beam. The

first method is a Galerkin scheme that uses cubic

B-splines as basis vectors for the approximation 2.5

subspaces VN In the general approximation framework

discussed in Section 3. The second approach Is a 2

modal approximation, which uses the natural mode

shapes of undamped free vibrations of the beam as I

basis vectors in approximating the infinite dimen- as

sional control problem. We have not carried out
0.

all of the details of the convergence proofs, but

it appears that methods similar to those in [5] 0.2 o.0 06 o

will yield the required proofs.
Figure 1. B-spline Approximations to f,

N = 2, 3. 4, 5, 6 Elements
For the optimal linear-quadratic regulator N 3 . 6 m

problem we take T - .01, R - .01 and Q such that 3o

<Qx(t), x(t)>v = jx(t)Jx
2. (4.15) 20

The functional control gain f in (3.6) has the form
10

f " (f1 ' f2) £ V. (4.1)

In the spline-based scheme, the function *0 is _'

an element of each VN., so that essentially we need -10 '4 r

only approximate the semigroup T(t) using the

Galerkin method. For each N, we solve the finite 
[20-

dimensional Riccati equation (3.12) by standard %

numerical methods and compute the Nth approximation o0o o20 0,40 060 o. '00

to f according to (3.16). Figures 1-3 show our
Figure 2. B-spline Approximations to f,

approximations tof f andf2 forN=2, 4.68 N = 2, 3, 4, 5, 6 Elements

elements. 20

Some of the splines used in this scheme are in

X but not in V, so we are not guaranteed V-

convergence for the approximating functional gains. %

Figures 1-3 demonstrate that the approximations to

0 S
f converge in X. It seems unlikely that these

8

approximations converge in V; V-convergence would

N..
require that f1 (1) converge to zero, but it does

not. 2-

In the second approximation scheme, the naturalP

mode shapes, which are used as basis vectors for -. 00 0.2 o40 06 050 ,00

the spaces vN in Section 3, are elements of V. so .

we should get the functions f converging in V. Figure 3. B-spline Approximations to f

It is straightforward to compute the operators TN. N 2 3, 4 5, 6 Elements

BN and QN for the finite dimensional Riccati

equations. Figures 4 and 5 show the approximating

functional control gains for N - 10, 14, 18, 20 U
modes, and the pointwise convergence of f 

N " 
is

consistent with V-convergence of the approximations

to the functional control gain f. A.%

-:. *. . . - ... . . . ... . .. .. .
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* For state estimation, we take the measurement
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ABSTRACT %

This paper presents a new derivation of a least-squares lattice filter and applies the

filter to identification of flexible structures. The vector-channel lattice here -- derived in

an infinite dimensional history space, without matrix manipulations or geometric

arguments -- can constrain the AR coefficients for several outputs to be the same.
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1. INTRODUCTION

In recent years, adaptive lattice filters have been used increasingly in signal processing to implemcnt

least-squares algorithms and other estimation methods. One advantage of a least-squares lattice filter is

that it is recursive in both time and order, while the classical least-squares algorithm is recursive in time

only. Also, lattice filters have been shown to possess desirable numerical stability [1]. Lee, Morf and

Friedlander [2,3] developed the time update equations needed for adaptive lattice filters and studied

applications to speech processing and adaptive control. For derivations and discussions of lattice filters,

see [4,5,6,7].

'p Potentially important new applications of lattice filters appear to lie in adaptive identification and

control of large flexible structures. Because such sturctures have many, usually infinitely many modes of

""- vibration, the problem of determining the order of a model to use for on-line identification and control is

a major obstacle. A lattice filter, with its order-recursive property, can in principle identify the effective

order of the structure and adaptively increase this order to accomodate new excitations to the structure or

decrease the order as faster transients in the structure are damped out. Suridararajan and Montgomery

[8,91 and Wiberg [10,11] were first to apply lattice filters to identification of flexible structures.

'Sundararajan and Montgomery used the lattice to estimate the number of excited modes of a flexible

structure, while using fast Fourier transforms to identify the frequencies and damping ratios. Wiberg has

studied identification of structural frequencies and damping with lattice filters. For structural identification

from free-response data, Wiberg has developed a "vibration lattice", which enforces the constraint that

each scalar measurement channel for the same structure have the same auto regressive (AR) coefficients.

To understand the motivation for Wiberg's vibration lattice and our vector-channel lattice, consider

the usual linear AR (auto regressive) model

y(t)=2 Aly(t-j)+ n(t), (1.1)

where y(t) is an m-vector, each A, is an m x m matrix of parameters to be estimated and i:(t) is the error.
The least-squares lattice filter yields a least-squares estimate for the Ai 's that is recursive in both t and n.

Now suppose that y(t) represents m sensors on the same flexible structure and that N observable modes

~-I-
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of the structure are excited. Then the AR model above with n something less than 2N should fit the data.

However, only in special circumstances, will the order of the minimum AR model that fits the data equal

the order of the structural vibrations, since the AR model has nm eigenvalues while the structural

response has 2N eigenvalues. In general, the minimal AR model will have extraneous eigenvalues. If

modal frequencies and damping ratios are desired, their identification will be complicated severely by the

extraneous eigenvalues of the AR model.

On the other hand, if the A 's in the ARMA model are constrained to be scalars, then the minimum

n is always 2N. This constraint represents significant information about the system; it amounts to writing

the scalar AR model for each component of the measurement vector and imposing the constraint that all

m of these processes have the same AR coefficients because they are measurements of the same linear

system. When the measurements are noisy, incorporating this information into the estimation algorithm

is even more important than resolving the relation between the number of modes and the order of the AR ,t

model. Using all information about the system is especially important in on-line identification of

distributed systems like flexible structures. Even if the sensor data is virtually free of random noise, the

number of excited modes often is greater than the allowable order of the lattice filter, so that the higher

frequency modes amount to unmodeled distrubance in the sensor data.

The lattice derived here solves the problem of constraining the AR coefficients for multiple outputs

to be the same. We refer to this lattice as a vector-channel lattice because it treats several outputs as

components of one vector measurement channel, as opposed to previous lattices, which treat each scalar

output as a single channel. In general, there can be multiple vector measurement channels. When each

channel contains only one component, the vector-channel lattice reduces to the standard

multi-input-multi-output lattice, which we refer to as either the standard lattice or the scalar-channel

lattice. -

Although application of the classical recursive least-squares algorithm to the case where the

measurements are vectors but the AR coefficients are scalars is straight forward and well known (see [7]),
'.'

a lattice filter for this problem apparently was not derived until Wibcrg introduced his vibration lattice for
0.

structural identification. The vector-channel lattice differs from the vibration lattice in two respects. First,

one coefficient that is a scalar in Wiberg's and previous lattices is a matrix in the vector-channel lattice,

WP
10 the dimension of this matrix being determined by the dimension of he vector measurement channels.

-2-

4.,7



Second, the vibration lattice does not accomodate an input, or control; i.e., the moving average par of an

ARMA model. This capability is, of course, important in adaptive identificationl and control. As in

previous lattices, a moving average must be treated as an additional measurement charmel in the

vector-channel lattice. The trick is to constrain the AR coefficients to be the same for all true

measurement channels while allowing different coefficients for the input channels. Our method for

including the MA terms in the vector-channel lattice is discussed in Section 3.3.

In Section 2, we derive the vector-channel lattice filter and the algorithm for generating the AR

coefficients from the lattice data. This derivation differs from previous derivations of least-squarcN lattices

in several importants respects, all of which stem from the fact that we work in a Hilbert space of infiitely

long history vectors. Previous lattice derivations have dealt with finite history vectors of chanilng lcngth

and have relied heavily on matrix manipulation and/or geometric arguments, including nonorthogonal

projections. We use neither type of argument; our derivation requires only elementary properties of

orthogonal projections in lilbert space.

The orianal motivation for the derivation here was not to develop a vector-channel lattice. In

[12,13] we developed infinite dimensional ARMA models for certain classes of distributed sy stems, with

one aim being to use these ARMA models as the basis for an approximation theory that will predict the

behavior of lattices of increasing finite order in adaptive identification and control of infinite dimensional

systems. In such analysis (which is continuing), infinite histories of inputs and outputs are used. I lence.

the infinite dimensional history space in which we work.

In Section 3, we summarize the vector-channel lattice algorithm and discuss its implementation.

From the derivation of the lattice, we deduce an algorithm for one-step-ahead prediction and show how

to make copies of an input so that in a vector ARMA process the AR coefficients can be constrained to

be the same for each channel but not the the MA coefficients.

In Section 4, we compare numerical results obtained with standard and vector-channel lattices for the

simulated forced vibrations of a flexible structure with two position measurements. First, we use the

standard lattice to treat the measuremets as two independent ARMA processes. Then we use the

vector-channel lattice to treat the measurements as the two components of one vector process, thereby
d",

imposing the constraint that each measurement process have the same AR coefficients. We use the lattice

', -3-
-
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2. DERIVATION

Definitions and Order Updates

The history space in this paper is the following Ililbert space of infinite column vectors:

= X! 2 X3 . :each xs areal m-vector

and <0,0> <

where

> XT (2.1)

i~i1
A

and ; (the forgetting factor) is a positive real number. Throughout this paper, < .,. > means the inner

product in (2.1).

The following derivation assumes a sampled process with p channels, each of which contains m scalar

measurements. In other words, the measurement from channel i at time t is the in-vector

'W -[j- (l) M ... yJ (t) I = I .... p. (2.2)

lhe infinite history vector of channel i is

,,(t)= [ (y t) )T (yi(t 1) )T T . (2.3)

In applications, all but a finite number of terms in 00(t) can be set to zero. The main advantage of the

infinite dimensional history space for the lattice derivation is not that it allows histories of infinite length,

but that it accomodates histories of all finite lengths in the same space.
*4

The following definitions are necessary. For any integer t and nonnegative integer n: %

S(t)=span{ %P 1(t) , VP(t) } (2.4) P-

/lo(1)= (0 , i,(1)= S( - 1)(D S(t - 2) ( ... O S(t - n) (2.5)

1%
P,(1) = Orthogonal Projection onto I1 W() (2.6)

5-"
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E(t) =S(), Ef(t) [ - P,(i)] Si), forward error space (2.7) 4,,

bI
t (t)= S(), E(t) =[I - I,(t + 1) ] S(t - n), fackward error space (2.8)

Pf()=Orthogonal projection onto F''Pt t'(t)= Orthogonal projection onto Eb(t) (2.9)

Note that the definition of the backward error space E(t - 1) amounts to a Gram-Schmidt

orthogonalization of the history spaces S(t-1), S(t-n).

The rest of this section derives a number of recursions from the definitions given so far. Like

(2.4)-(2.9), subsequent equations in this section are valid for any integer t and any nonnegative integer n,

except where otherwise indicated. Of course, for implementation of the lattice algorithm, initialization at

some finite initial time is necessary, and this is discussed in Section 3. In the current section, initialization

need not be considered.

A first consequence of the foregoing definitions i" s

-b-

11,( - ) (+ L,(t- 1) //,t) ) L (t 1)(2.10) i-'"

where the notation D indicates the direct sum of orthogonal subspaces of C2(Rm, A). Because of (2.10)

and since E(t) and En°(t - 1) are orthogonal to II1(t) , elcmentary properties of projection yield

P,,'(1)- P,(t- 1) + I 'U 1t - P(t) + - 1) (2.11)

tn(t) P I(t)= I'P([ - 1) P'(t)= 0 (2.12) '-p

From (2.11) and (2.12), it follows that

[I- P+ I(t+ 1) 3= 1- Pnf(t) I 1I - P(t) ], (2.13)

b13 1- P,,1t) ]=[ 1- P'(t - I) [1- P'() 1. (2.14)

The definitions of the forward and backward error vectors are similar to (2.7) and (2.8):

fo(t)= t) , f(t) = [I - P(t)] iki(t), =1 ... p Forward error (2.15)

(t) b b(t) - P,(t+ l) ](t-n), i= I ... p Backwarderror (2.16)

-6-
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M=

T-hen,

,(I)=span and E,(t)=span b'(t)}, i , ... p. (2.17)

.1*

The order update formulas for the forward and backward error vectors follow from (2.13)-(2.16).

Substituting (2.14) into (2.15) for n+ I yields

fn+It)=[W - P+(t)] 4(0)= [I - Pb (t-1) 1I- Pnp) V

which in view of (2.7) becomes %

fn+ 1(t)= 1 PnbPt- 1)]1 f"r(t)=fi,(t) - 1"(t-l,(t (2.1S) -U

for 1 = 1,2, ... p. Similarly, (2.13) and (2.16) with (2.8) yield

b = b(t - 1) - P(t b,(I - 1). (2.19)

To make these order update equations useful, the following elementary and standard result is required

(see [ 14], page 56).

lemma 2.1. Let II be a real Ililbert space, E= span [ h 1,h 2,  php a subspace of II and 'E- the

orthogonal projection bf 11 onto E. Then for any h e 11,

4P p

PI.-h=[h I2 ... hk ] a = ah ) (2

where a E R P satisfies

RE a = d (2.21)

V

with RE the nonnegative symmetric matrix whose (i,j) element is < hi, hj >11 and d the p-vector whose ir .4

element is < hi, h >j, . For each h e If, at least one solution to (2.21) exists. The matrix RE is positive

definite if and only if the vectors hi are linearly independent.

The following matrices are useful for applying Lemma 2.1 in (2.1.) and (2.19). For n= 0, 1.

K = p x p matrix whose (iJ) element is < f'(t), bj(t - 1) > , (2.22)

R,t) p x p matrix whose (i,j) element is < f (t), fJ(t) > , (2.23)

.7
. -7 .' '. p
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Rr(t)=p x p matrix whose (i.j) element is < b,(1), b'n(t) > . (2.24)

Also, we define

[fn~t ] =  f n~t  fn~t "fn ], [bn(t)]= bl"t) bn(t) ... b ] • (2.25)"

i.e., [f,(t)] is the matrix containing the p infinitely long columns fin(t) , and [ bn(t)] is the corresponding

matrix containing the bn(t)'s. With these definitions and (2.17), Lemma 2.1 implies that (2.18) and (2.19)

are equivaent to

[ A+(t) ]= [ f() ] - [ b,,(t- 1) ] R (t - l)K+(t), 2.26)

[ bn+(t) = [ bn(t - 1) ] - [ f,(t) ] R. e(t) K,+1(t). (2.27)

llHere, R. 1 (t) Kn+1(t) means any pxp matrix a such that Re(t) a = Kn+1(t) and R;4(t- 1) A,~(t) means

any pxp matrix such that Rr(t - 1) $ = KT+I(t). That at least one such a and one such /l exist follows

from Lemma 2.1 and the existence of the projections in (2.18) and (2.19).

While (2.26) and (2.27) are more explicit than (2.18) and (2.19), they still are not useful for

computation because columns of the matrices [fn(t)] and [ b,(t)] are infinitely long. It turns out that

only the top m rows of (2.26) and (2.27) are used in the lattice filter. Hence, it is useful to define the

following mxp matrices:

e,(t ) = Top m rows of [ fn) ] rn(t) Top m rows of [ b,(t) 3. 2 IS)

Then, the top m rows of (2.26) and (2.27) are

e,+I(t) =en(t) - r,(t - 1) R- r(t- 1)Kf+1(t), forward residual (2.29)

rn+ (t)= r(t - 1) - en(t) R. e(t) K,+I(t), backward residual. (2.30)

These two equations are used in the lattice filter for order updates of the forward and backward residuals.

For order updates of R(t) and Rr(t), substituting (2.29) and (2.30) into (2.23) and (2.24) yields

R,e+(t)= Re,(t) - Kn+(Et) Rr(t - 1) K7+ 1(t),

%. - n n
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Rn+ I(t)= R(t- 1) - K +It) R- e()K +(t

Time Updates

The following vectors are elements of f 2(Rm, )

~position i
1 0=[ 0 0 ... 1 0 ... 0 ]T, i= 1,2, ... m (2.31)

SA.

where P,(t + 1) is the projection onto H,(t + 1) , as before. The subspace

A

11,(t+ l)=span{ l(t) .. P(t). ... (t-n+ 1)+ . ). ....

VA

is useful in deriving the time update equations for the variables K,(t) . From (2.3)-(2.5) it follows that

00(m ) O(

11,(t + 1)=span ) J 2.33)

/(t -n), V.P( -n)/ .

A I A
11(t+ 1)= lf(t+ 1) span 0,(t + 1) . ,(t + 1)} (2.34)

where 0(m) is the mxm zero matrix. If

A A
P,(t + 1) = Projection onto H,(t + 1) and

A A

Qn(t + 1)= Projection onto span{ (t + 1),... + 1)), (2.35)

A
it follows from (2.34) that P (t+ 1)= P(t + 1) + Q,(t +), so that

A

[I - P4, + ')]=[I - P,(t+ 1)] + Q(t+ 1). (2.36)

.- 9 -



Substituting (2.36) into (2.16) yields

b'(t 11  +I , (2.37)

where

1I=[" - P,(t+ 1)] iJr(t-n), [= Q(t+ 1) if.i(t-n).

From (2.3) and (2.3i) it follows that

+ O ~ - n ( k

tl'tn) ( )+ Z yjt -n)k
k= 1

As in (2.2), yk is the kth scadar measurement in channel j. Also, in view of (2.33),

ll=[I-P'(t+ 1)1) [-P()] r(-n- (2.38)

According to (2.35) and L.emna 2.1,

A

=F [ 4nt+ 1) ] Gn (t) d, (2.39)

where

AA, A+1)- A,h + 1) 3 [On t 1 '(t + ) ... 4 ) ( + 1) ] ,(2 .4 0)

Gn(t) mx m matrix whose (i,j) element is < ' (t+ 1), q~(t+ 1) > (2.41)

Ak

d= m-vector whose k element is < 4 ,(t + 1), q/,J(t- n) > . (2.42)

The expression G- I(i) d means any rn-vector c such that G,(t) a = d, and it follows from Lemma 2.1 that

at least one such a exists. Since [I - Pn(t + 1) ] is self-adjoint (being an orthogonal projection),

A
k element of d= < 0,(t + l), 0 J(t- n) > (2.43)

< - P.(t+ 1) ji41-n) >=< Ok b (t) > =rk(t);

i.e., the vector d in (2.42) is the j" column of the matrix rn(t).

0,

ft. ft 10-
-'f
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Now, since [I - Pn(t + 1)] is an orthogonal projection, it is self-adjoint and equal to its square.

f fence, from (2.37),

<fi(t + 1), bJ()> = < (t+ 1), bJ (t)>=< Vi(t+ I), 1 > + < t+ 1), F> . (2.44)

According to (2.1) and (2.38),

< '(t+ 1), FI > =i < it(t), bi (t- 1) >=A < fi(t), bn(t- 1) > . (2.45)

Since

Ak

< 0/(t+ 1), , (t+ I) > =< E/- P'(t + l)] t+ 1), >
=< fin(t + I) > =en"'(t +1)

using F from (2.39)-(2.43) yields

< ip&(t + 1), F > E ith column of en(t + I) ] T Gn (t) [jth column of rn(t)] . (2.46)

Now, equations (2.44)-(2.46) show that the time update equation for Kn+1(t) (defined by (2.22) ) is

T I
W5 .e. Kn+ I(t + 1 K= , I l(t ) + e, (t + I1) G,- (t) rn(t) .

The final equation needed to complete the residual error lattice is the order update equation for

G,(t) From (2.32) and (2.41), the elements of this matrix are

A , A ,'

GJt=< 09'(t + 1), c] /n(t + 1) > =< , nt+ 1,r > (.7

% ~< ', > - < Pn(, + 1) 0'O > .

I The subspace 1l,(t + 1) can be written as the following direct sum of orthogonal subspaces:

L ii1)~~~~~ (1 £ 0 ( 21 (t),

so that

b b bP,(t + i)= Pb..1 ( + + P._.(t) + ... + P0 (t), (2.48)

According to (2.17), (2,28) and Lemma 2.1,

5%%
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< lJ (t)4p i fr' > = [ r~'(t) ... rTk() I Rk(t) I.J ~

k rj(t)

Therefore, in view of (2.48), (2.47) becomes

"-
Gn(t) = I r(t) Rk(t) rkT(), n = 1, 2 (2.49)

k=O

N Since Po(t + 1)= 0 (recall (2.5), (2.6)), it follows from (2.32) and (2.41) that

Go(t) = 1. (2.50)

Also, (2.49) and (2.50) yield

G,+ (t)= G(t) - r(t) Rnr(t)rT(t), n= 0,1,2.... (2.51)

It should be noted that in previous lattices, including the lattice in [10], the update equation

corresponding to this last equation has a scalar Gn(t) instead of the mxm matrix G(t) here.

AR Coefficients

For each i= l....p, P(t) rq'(t) can be written as a linear combination of the history vectors that span

HI,(t) , and P,(t + 1)01(t - n) can be written as a linear combination of the history vectors that span

H,(t + 1) . This means that, with the notation in (2.25),

[fn(t)]=[f(t)] - [i/t-j)] An,(t), n= 1,2,.... (2.52)

P=

n

[b,(t)]= [0(t - n)] - [q(t-j+ 1)] Bj(t), n= 1,2.... (2.53)
j~l

where A,t) and Bljt) are p x p matrices and

1 441) 1 1 0Ut) 0 2 () ... P 1(t) (2.54)

-12-
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Since [f(t)] is the error remaining after orthogonal projection of the data taken through time t (recal

(2.2)-(2.3)) onto the history space 1i1(t), the coefficient matrices Aat) minimze the 2(Rm, ;
. ) norm of

n[f(t)] over all autorcressive models of order n. The matrices Aat) are called the AR coefficients at

time t

Substituting (2.52) and (2.53) into the order updates in (2.26) and (2.27) and matching coefficients of

the history vectors i(t- j) yields

r TA+| (t)= Aj(t)- Ba(t - 1)R- r(t- I)K+(t), j= 1,2,..,n, n= 1,2... (2.55)

A,+ ,n+1 (t)= Rnr(t- 1)KTn1 (t), n= 0,1,2 ... (2.56)

Bn+I+I (t)= Ba (t - 1)- Aj(1)Re(t) Kn+(t) j= 1,2,...,n, n= 1,2.... (2.57)

Bn+1l (t)= R.e(t) K,+I(t), n= 0,1,2, (2.58)

The AR coefficients, '1n+j(t) , can be generated with (2.55)-(2.58); however, this algorithm requires
that the AR coefficients be calculated at every sampling time because B.,,(- 1) is needed to compute

An+ (0). The following derivation provides an algorithm for computing the AR coefficients at any time t

without the values of Aa, 1(t - 1) and Ba (t - 1).

Using (2.11) in (2.32) with the notation in (2.40) yields

t+ 1)nl+(t + l) i  
Pi(t+ 1)] P i(t)

t,(t± +) - p,(t) 0'= ,( + 1)- tbn(t) R r(") []

or

A A

I4 +(t + 1)] =[n(t+ 1)] - [bn(t) R,(t) r(t). (2.59)

Since P,(t + 1)0' E 1i(t + 1) , it folows from (2.5) and (2.32) that there exist p x m matrices Cnit)

such that

.13--
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where [ ] = [ t  2 *.m ] Substituting (2.53) and (2.60) into (2.59) and matching coefficients of -

the history vectors yields A.

r TCn+l1 (t)= Cnj(t) - B,(t) R-r(t)r,(t) j= 1,2,...,n, n= 1,2 (2.61)

C, (t)= R; r(t)rr(t), n= 0,1,2,... (2.62) -

The expression [ b,,(t)] will denote the part of [ bn(t)] below the first m rows. Then, from (2.53) 6

n ,.

A

0b,( ]=[E(t - n- 1) - f(t -j) B,,j(t), n= 1.2,.... (2.63)
Ji:q

I

Next, the developement in (2.37)-(2.43) yields

[0b() 0+ (t + ) ] 1(t) r(t).

After substitution of (2.60) into (2.64), the new equation from row (m + 1) down is

[nl) b,,( - j)] - C, [i~- l() G () rl(t). n= 1. 2,. (2.65)

Finally, equating the right sides of (2.63) and (2.65), using the right side of (2.53 tor b,(t - 1), and .

matching the coefficients of the history vectors yields

%

Bnj(t- 1)= Blj(t) - C.,(t) G 1 (t)rn(t), 1,2,... n, n= 1,2... (2.66)

The algorithm consisting of equations (2.55)-(2.58), (2.61), (2.62) and (2.66) can be started at anv

time to obtain the AR coefficients. The order of the AR coefficients need not remain the same from one

time to another. In addition to this flexibility, this method is computationally attractive when the

sampling rate is high but the plant and/or control parameters need not be updated at every sample time.

The residual fidter is the only part that must be computed at every time step. Ir7
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3. IMPII IMN I ON

SU1ntllar, of the 1 .ttICe ALeorithms

Recall the definition (2.2) for the measurement vectors r(t) . Wc define the m p matrix

which contains the measurements at time t. We start the lattice filter at time t = () with the following

initialization:

a, IU)=i) for n+ I >:> , (3.1)

where a is a small number. If cr 0, this initialization corresponds to what commonly is called

prewindowing, which means taking y(t) = 0 for all t < 0. We have found that taking a on the order of

10- avoids numcrical problems with inverting certain matrices in the filter, as discussed below.

Residual lrror lattice

I or each t > 0:

(40  ru(t)= y(t) Rt) = "R(I) ' ) R--(t - , ( 0(t) (32)

For cach t L 1, for n=0 to t-l:

K,,, K 1~(t)= ,, n_(t- 1) e-, r , ; (t - ) r,(t - 1) (3.3).5

e,+ e,(t) - rrp - I) R(t- I)K T 1(t) (3.4)

,".rn+l( J = r ( t- 1) - r( RP? R "( t) K + (t) (3.5)

Re+ (t ) = R'(t- K,,(t)R-rUt- 1) K,+,it) 13.6)

n(+ ()= R (t - ) - _(t) R, (i)'K,,+ 0() (3.7)
-r

G+ i(t)= G'U) - rn(I)RnI(t)r1 i() n = 0,1,2 ... (3.8)

The maximum n can be increased by one with each successive time step. In practice, though, n is

not increased past some fixed order, due to finite computational capacity.

..
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AR Cocfficicnts'

The top m rows ot (2.52) are

,n

e(0 - ) y(t- j)A, 1 (t4 , n= 1,2 P
dj=t I.

At any time t, the AR coefficients Anjt) can be generated from the residual filter data by the following:

Forn = l t-I and fori l ,n

C,+ 1 ~U)= C,,i (t) - ni(t ) R2T()r rn ) (3.9)
-- -- ,.ln  (t) tRn  (t) K,+ 1(t)  (3.10) .

A,+ 1'j(t) = 1A ,i(t )  [B,,,(t )  Cn (t) Gl't r,(t) ] R-r(t -  1) Kn/'+(t) (3.11)"-,. --

where equations (2.56), (2.5K), and (2.62) are used as end conditions.

'V'\Iatrix Iniverses

It' R,20, R(t) and (;,(t) are nonsingular, then R-e(t), R-'(t) and G- 1(t) are the respective inverses. If

any of these matrices is singular, then the inverse should be interpreted as indicated after (2.27). If the

measurements are independent, then Re(t), Rr(t) and G,,(t) are positive definite unless one of the channels

(or a linear combination of the channels) fits the n t
h order .\R model exactly. We have found, however,

that letting letting R(;( - 1) = R(( - I) a I eliminates most numerical problems.

One Step Ahead Prediction

The nih order least-squares prediction of y(t) based on measurements up to and including time t-l,

* Is

'-S. n
= y(t-j)Aj(t- I) n= 1,2, (3.12)

Equivalently, the least-squares prediction ofy() is the matrx A,(t) that, if taken as the measurement at

time t, yields en(i)= 0. This second interpretation of.Vn(i) leads to an algorithm for its computation.

Writing (2.15) in the notation of (2.25) and (2.54) yields

-16 -

- , ~~-. : - .d"J ! -S.I, , ' ~*~****S***



i f-t} = [ - () [-Yt) .. .k -

= [ I- P,( )] [ i ] ( ) + [ l - t (t) + 1 0(( ] ( 1

The fact that the top m rows of [f,(t)] are en(I) and an argument similar to the argument involving

(2.47)-(2.50) show that the top m rows of (3.13) are

e,(t)= c,(t- I)y(t) + A (t)

where en(t) is the value of e,(t) generated by the lattice fory(t) = 0. The prediction then is

A 1)A

y,(t)=- G (t- l)en(t) n= 1,2 .... (3.14)

[his prediction can be generated with only (3.2)-(3.4) of the residual error lattice algorithm.

Includint! Known Inputs

When there is only one measurement in each channel (i.e., m = 1), the algorithm prescntcd n Section

2 reduces to the lattices derived in [2] and [3]. One of the major advantages of the aluorithn in this

paper, as mentioned before, is its capacity to accomodate an ARMA model in which all outputs have the

same Auto Regessive structure. For such a model, the foUowing imbedding accornodates an input that

does not have the same MA coefficients for each channel.

Let there be m scalar outputs, y1 (t) , and one scalar input u(t). The first channel then it [ yl(t).

yn(t) ]T The second channel is the m-vector [ u(t), 0,... 0 ]. The third channel is [ 0, u(t), 0.... ]

and finally, the (m + I) channel is the in-vector [ 0, 0, ...0, u(t) ]r.

It is easy to see that with these definitions, the desired model can be imbedded into a p-channel

(p= m + 1) vector-channel Auto Regressive model. The extension to the case of more than one input is

obvious. For m outputs and k inputs, the resulting vector-channel lattice has one channel for the outputs

and rnk channels for the inputs (and the corresponding copies).

0-17-
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Descrijtion of the Structure and Data Generation

A flexible beam is cantilivered to a rigid disc with fixed center, and a torsional spring is attached to ''

the disc. In-plane motion, including the linear transverse vibration of the beam is modeled. T-he beam is "'.

modeled as an Euler-Bernoulli beam with the properties listed in Table 1. The system has one input, the ' -

torque applied to the hub, and two outputs, the elastic tip deflection P7 and hub rotation C9. '

FIGURE 1. The Beamn-ltub Model --

TABLE 1. Structural Characteristics ".

Mass per unit length = .000288 slug/ inch
Htub moment of inertia = 85.6 slg in' ..
El for the beam = 40,506,000 slug in3/sc 2

Torsional spring constant = 85,600 lb-in..'-
Beam length = 1036.7 inches .-.
ub radius = 46 inches '-.

Modal Damping Ratio =.005 (.5 % critical) in each mode

Ijb

To generate input-output data, the state space representation of the first 12 modes of the structure €

was excited by a sequence of piecewise constant torques. A fnte element model with 15 uniform beam Qe,

elements (31 degrees of freedom) was used to compute the first 12 modes of the structure. The length of

,,.

the sampling interval and the duration of the piecewise onstant torques was .05 seconds (20 samples per

modeled as an.'.'_.',), . '.'..'_. '..'.7 ','_. ". "." ueB ulb wht p ri ie inable- , .T has one iu, the
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second). The input torque sequence was obtained from an IMSL subroutine that generates Gaussian ,

random sequences with mean zero and variance 10,000.

lable 2 contains the true discrete-time system eigenvalues and their magnitudes, and the damping

ratios (Zeta) and frequencies (Freq in rad/s) for the corresponding continuous-time eigenvalues. (From "€

here on, truesystem means the first 12 modes of the finite element model.) The continuous-time

frequencies and damping ratios were obtained from the logarithms of the discrete-time eigenvalues. The

first five modes of the system are below the Nyquist frequency (10 Hiz). For these modes, the frequencies Ile

and dzunping ratios in the first five rows of Table 2 are correct. For the modes above the Nyquist

frequency, aliasing produces frequencies lower than the correct values and damping ratios higher than the r

correct values. (The aliased frequencies and damping ratios are listed in Table 2 for comparison with the

subsequent eigenvalue estimates.) In Table 2, eigenvalues are ordered according to magnitudes.

TABIE 2. True System -iLenvalues (Discrete-Time)

Real Part imaginary Part Zeta Freq Mamitude

1 0.999390 0.034733 0.005000 0.694825 0.999827
2 0.961521 0.269716 0.005000 5.469626 0.998634
3 0.676489 0.730860 0.005000 16.480264 0.995888
4 -0.099991 0.986622 0.005000 33.435967 0.991676
5 -0.932683 0.319972 0.005000 56.222164 0.986043

6 -0.444545 0.872270 0.010383 40.842544 0.979018
7 0.924166 0.296545 0.095783 6.209997 0.970578
8 -0.164358 0,946500 0.023021 34.854594 0.960664
) -0.515252 0.797210 0.024291 42.891594 0.949225
10 0.766445 0.537675 0.107091 12.234877 0.936233
11 -0.759660 0.521941 0.032095 50.791924 0.921686
12 0.503091 0.753000 0.100486 19.635824 0.905600

For studying the effects of measurement noise, small amounts of white noise were added to the

outputs and the resulting noisy measurements were fed into the lattice filters. Note that three uncorrelated

sequences of white noise were used. The first was the torque, which was an input known to the lattice;

hence this sequence was white noise only in the sense of its statistics and the lattice saw it as a known

deterministic input. The other two white noise sequences were scaled by various amounts and, in some

cases, added to the data from the two sensors to produce the noisy measurement sequences that were fed

into the lattice. This measurement noise was not known to the lattice.

-.,~



It is well known that, in the presence of measurement noise, the least-squares method yields biased

estimates for the AR coefficients. If it is essential to obtain accurate estimates for these parameters, other j

identification methods such as extended least squares (ELS) or instrumental variable (IV) methods can be

used. The least-squares lattice can be modified easily for the ELS method. For lattice implementation of

the IV method, see [15] or [16].

We processed input/output data with the lattice filters to estimate the number of excited modes (one

half of the plant order) and the ARIA coefficients. From the AR coefficients, we obtained estimates for

plant c genvaiues. We used a vector-channel lattice and two standard lattices for comparison. The

vector-channel lattice had three channels, each with two components, (p = 3, m = 2). Channel I contained
5 ,, .

the two measurements (hub rotation and tip deflection); Channels 2 and 3 contained, as described at the -5,

end of section 3, the required copies of the input torque. We used the two standard lattices independently,

I mfor the hub rotation measurement and for the tip deflection measurement. Each of these lattices had two .-

one dimensional channels (p = 2, m = 1), Channel I for the measurement (hub or tip) and Channel 2 for

the input torque. Due to the ambimuous relationship between ninimal lattice order and the number of

excited modes, mentioned in Section i, and the possibility of extraneous cigenvalues, we did not use both

measurements together in a standard multi-input-multi-output lattice. For all runs, the value of the

forgetting factor , was 0.95.

()rder )etermination
,.Q

Recall the definition (2.23) for R (t) . Each diagonal element of this matrix is the square of the n"h

order forward error norm for the corresponding channel. Figure 2, which was obtained from the .

vector-channel lattice after 300 steps, shows the behavior of the (1,1) element of Re(t) (the norm of the

forwasr error for the first vector measurement channel) as n increases. Recall that the first channel of the

vector-channel lattice contains the measurements from both sensors. The lowest curve corresponds to the

no-noise case. The other curves correspond to successively increasing amounts of noise added to the

measurements.

The effective order of the structure, which is twice the number of significantly excited modes, can be

determined from how Re(t) varies with the lattice order n. The most important feature of the three curves

- 201-
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in Fieure 2 is the drop as the lattice order goes from 10 to 12 (i.e., from 5 to 6 modes. This drop

indicates that the effective order of structure is 12.

The behavior of the (1,1) element of R"(t) in the absence of measurement noise indicates that six

modes are excited substantially by the input. The remaining six modes in the simulation model are

excited minimally and contribute little to the output. The dra.)ic drop in the graph between n = 1) and

n = 12 occurs when the order of the filter matches the number of substantialv excited modes. ( Ihe plant

order must be even.) As n increases past 12, more and more of the output from the minimally excited

modes is accounted for, until the forward error falls to /cro at n = 24 because a 24 1h order ARMA model

fits all of the output.

When small anounts of noise are added to the measurements, the raph changes. The drop still

occurs between 10 and 12, but its magnitude decreases as the amnount of mcasureiment noise increases.

Furthermore, as n increases past 12, the (1,1) element of RI'( hardly decreases at all. The excitation of

the structure is the sunc with and without measurement noise, but the output from the miimnally excited

modes is lost in the measurement noise and the filter cannot dimpinguish these modes from the noise.
With increasing measurement noise, the graph approaches a level strai~it line, indicating that the filter is

distinguishling less and less data from the structure and noise.

The accuracy of the subsequent eicenvalue estimates indicates, as expected, that the five sub-Nyquist

frequency modes are excited most and the first mode above the Nvquist frequency is excited substantially

thoug.h lass than the first five. Diffcrcnt input sequences, including combinations of many s.inewacs,

produced the same behavior. In all cases, only the freqiericies below Nyquist frequency are excited

substantially. This is not surprizing, since the input is applied at the sampling frequency.

Several authors have suggested criteria to estimate the order of a system from input-output data, see

[9.17]. Each of these criteria looks for a minimum Df a scalar function of the form

F(n)=t In [ / , R,(t)] + nxf(t). (4.1)

The major difference among these criteria is the choice of '() . For the systems studied here, a variety of

these methods were attempted and none performed noticeably better than the (1,1) element of Re(t) alone,

as used in Figure 2.

-21
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Figure 2. Norm of the Forward Error vs. Lattice Order

Log ((1, 1) Element ofRe 1)
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|stimation of Eiaenvalues, Frequencies and Damping Rations

1lo estimate the eigenvalucs of the structure, we generated the estimates of the AR coefficients with

the algOrithm in Section 3, for various orders, and computed the eigenvalues of the AR model. The only

case in which the estimated AR coefficients were correct was where there was no sensor noise and the

lattice order was 24 (full order; i.e., the order of the true system), but the estimated eigenvalues for the q.

sub-Nyquist modes are generally good for low measurement noise and lattice order IS or greater. This is

possible because most of the AR coefficients of a large order system are highly sensitive to perturbations

in the eigenvalues and, conversely, the eigenvalues are relatively insensitive to perturbations in the AR

coefficients. The relationship established by Cayley-Ilamilton between the AR coefficients and the

eigenvalues makes the high sensitivity of AR coefficients with respect to cigenvalues apparent.

In this section, we are interested primarily in the effects of measurement noise and unrmodeled modes.

In the absence of noise, all the eigenvalues corresponding to the higher modes were identified, iven hie,,_.h

enoui filter order. The full-order vector-channel lattice (order 24) identified all of the system eigenvalucs

with four or more significant digts, except one of the faster modes, which had only three digit accuracy.

The full-order standard lattice for either measurement produced eigenvalue estimates with 2 to 3 accurate

sinrnificant dits. Table 3 compares standard and vector-channel lattices for the ISlh-order filter with no

noise added to the measurements.

.5.

In Fables 3 and 4, complex eigenvalucs are represented by their contlnuous-time damping ratio and

frequency and discrete-time mami-tude. The frequencies, damping ratios and magnitudes estimated for the

flrst five modes are listed first. Then, the aliased frequencies and damping ratios estimated for the

remaimng modes are ordered according to the magnitude of the corresponding discrete-time eigenvalues.

(These abased frequencies and damping ratios are all that can be identified from the input/output data,

without other knowledge of the true system.) In practice, the magnitudes of the eigenvalues are likely to

be the only tool for proper ordering. It is common in structures, for example, that discrete-time

eigenvalues corrsponding to higher modes have smaller magnitudes.

To study the effects of measurement noise, added small amounts of noise, roughly 3% of the

output on average, to the measurements. Table 4 compares the scalar and vector-channel lattices for this

- -23-
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TABLE 3. Lattice Comparisons No Noise

Order = 18

After 1500 Steps

Zeta Freq Mag

Tip Displacement Lattice

-0.1793 0.6866 1.0063
0.0057 5.4705 0.9984
0.0050 16.4786 0.9959
0.0051 33.4305 0.9914
0.0050 56.2204 0.9861
0.0122 40.7381 0.9754
0.0474 48.4888 0.8913
0.0785 34.8581 0.8717
positive real 0.2882
negative real 0.1907

flub Rotation Lattice

0.1301 0.6933 0.9955
00060 5.4721 0.9984
0.0050 16.4791 0.9959
00052 33.4310 0.9913
0.0050 56.2205 0.9861
0.0128 40.7135 0.9744
0(1.487 48.6059 0.8882

(190953 35.2980 0.8445
0) 3X4 31.6749 0.0875

Vector-(harinel I attice

0.0809 01.6987 0.9972
0.0060 5.4696 0.9984
0.0050 16.4790 0.9959
0.0052 33.4304 0.9914
0.0050 56.2214 0.9861
0.0125 40.7320 0.9748
0.0470 48.6657 0.8919
0.0886 35.1743 0.8551
positine real 0.1289
negative real 0.0697

24 -LPS. . -"



TABLE 4. Lattice Comparison: Noisy Measurements

Order 24 (Full Order) Order = 20 Order 18

After 1200 Steps After 1500 Steps After 1500 Steps

Zeta Freq Mag Zeta Freq Mag Zeta Freq Mag

Tip Displacement Lattice Tip Displacement Lattice Tip Displacement Lattice

-0.0813 0.7219 1.0029 0.9710 0.2177 0.9567 0.0031 5.4591 0.9991
0.0046 5.4668 0.9988 0.0031 5.4718 0.9992 0.0040 16.4651 0.9967
0.0052 16.4814 0.9957 0.0040 16.4631 0.9967 0.0057 33.4285 0.9905
0.0056 33.4273 0.9907 0.0057 33.4298 0.9906 0.0041 56.3500 0.9886
0.0056 56.2121 0.9845 0.0039 56.3435 0.9890 -0.0059 23.8576 1.0070
0.0103 40.7798 0.9793 0.0141 23.6348 0.9835 0.0133 40.8553 0.9731
0.0129 44.9677 0.9714 0.0119 40.8653 0.9760 0.0203 46.4778 0.9538
0.0151 50.1422 0.9627 0.0142 46.7545 0.9674 positive real 0.9759
0.0676 22.8835 0.9254 0.4058 24.7266 0.5776 negative real 0.9238
0.0564 28.5524 0.9226 negative real 0.9338 positive real 0.9001
0.3655 15.4049 0.7390 negative real 0.3413 positive real 0.0355
negative real 0.9540
negative real 0.3509

Hub Rotation Lattice Hub Rotation Lattice Ilub Rotation lattice

0.0593 0.6802 0.9980 0.3404 0.7049 0.9873 0.0153 5.4965 0.9958
0.0048 5.4703 0.9987 0.0108 5.4909 0.9970 0.0044 16.4938 0.9964
0.0051 16.4789 0.9958 0.0049 16.4915 0.9960 0.0054 33.4298 0.9909
0.0054 33.4057 0.9911 0.0054 33.4236 0.9909 0.0064 56.2400 0.9821
0.0052 56.2204 0.9854 0.0059 56.2616 0.9835 0.0014 41.1753 0.9972
0.0035 45.9140 0.9921 -0.0057 48.1314 1.0138 0.0527 24.0119 0.9386
0.0123 40.6022 0.9754 0.0048 41.0987 0.9901 0.0282 486725 0.9335
0.0192 51.8548 0.9515 0.0951 21.7632 0.9013 positive real 0.9648
0.0668 27.8271 0.9110 0.1231 27.0668 0.8455 positive real 0.9510
0.0717 26.0990 0.9104 0.0909 58.5534 0.7655 negative real 0.7082
0.1526 15.2101 0.8892 negative real 0 1385

,negative real 0.9563
negative real 0.2579

Vector-Channel Lattice Vector-Channel Lattice Vector-Channel Lattice

0.0133 0.6941 0.9995 0.6853 0.5977 0.9723 0.9594 0.2498 0.9584
0.0044 5.4658 0.9988 0.0052 5.4792 0.9986 0.0065 54728 0.9982
0.0051 16.4795 0.9958 0.0044 16.4813 0.9964 0.0043 16.4825 0.9965

V 0.0055 33.4165 0.9908 0.0055 33.4307 0.9908 0.0056 33.4308 0.9907
0.0054 56.2169 0.9850 0.0055 56.2822 0.9848 0.0056 56.2721 0.9843
0.0113 40.7037 0.9772 0.0044 48.2454 0.9894 0.0080 40.9916 0.9837

% 0.0118 45.4384 0.9735 0.0074 40.9636 0.9849 0.0193 24.1705 0.9769
0.0209 51.3041 0.9479 0.0553 23.5206 0.9370 0.0174 48.0543 0.9591
0.0677 27.9494 0.9096 0.2774 26.0845 0.6863 negative real 0.8362
0.0924 25.0789 0.8902 negative real 0.8681 negative real 0.0488
0.2028 15.6399 0.8505 negative real 0.4307
negative real 0.9521
negative real 0.3142

•25
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Overall, the lattices produced good estimates for the modes below the Nyquist frequency. The

eigenvalue corresponding to the first mode above the Nyquist frequency also was obtained with

reasonable accuracy, although the frequency and the damping ratio for this mode are aliased. The lowest

mode, corresponding to the hub rotation, is the hardest among the first five to identify. Longer data sets

and higher-order filters are needed to obtain reasonable estimates for this mode. In general, the

reduced-order lattices require more data points to obtain good estimates of frequencies and damping

ratios.

Generally, lattices of order lower than 18 missed the lowest mode entirely, but identified the other

four sub-Nyquist frequencies satisfatorily, although some of the damping ratios were quite inaccurate, If

we only need small prediction error from the filter (say, for adaptive control), then Figure 2 indicates that

12 is a sufficient lattice order.

When we added sensor noise that was on average 5%,o of the sensor data, the results were almost as

g ood as those in the tables for 3% noise. For noise levels of 9% and above, the filter identified only one

or two of the higher sub-Nvquist frequencies and yielded poor estimates for damping ratios. This is

consistent with Figure 2, which indicates that the lattice filter has trouble distinguishing between the

structural dynamics and the greater sensor noise. We expect that the estimates of the lowest frequencies

would improve with more samples, which would cover more periods of the lower frequencies.

Tables 3 and 4 indicate the advantages of the vector-channel lattice. The vector-channel estimates for

the lowest mode are sii_ificantly better than those obtained by the independent standard lattices. For the

rest of the modes, where standard lattices produced good estimates, the vector-channel produced estimates

close to the average of the two independent standard lattices.

The ordering of the eigenvalues is also important. Often the standard lattices estimated erroneous

r eigenva.ues whose magnitudes were greater than the magnitudes of the true eigenvalues. Sometimes these

erroneous eigenvalues even had magnitudes greater than one (and negative damping ratios). This greatly

complicates identifying the true modes below the Nyquist frequency.

We found that, in a large majority of comparisons, the vector-channel lattice estimates were at least

as good as or better than the estimates from either standard lattice. I lowever, since the vector-channel

estimate is a kind of average of the individual standard lattice estimates, it is possible that one sufficiently

-, -26 -
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noisN measurement channel cani cause the vector-chainel estimate to be worse than another sin~1e chaninel

-estinate. 1liis happened in Table 4. for example. %%Li, the standard lattice tbOr the hub channel estimiated

a neg~ative damping ratio, 'which caused the vector-channel lattice to estimate an Incorrect miode with

treqencv4&2and damping ratio similar to that of' the true modes.

'p.4
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i. C(\(I IONS

\We have developed a least-squares lattice filter that can constrain the coefficients in the AR model to

be the same for some or all of the channels of a multi-output system. If this constraint is not imposed.

the vector-channel lattice here reduces to the standard multi-input-multi-output least-squares lattice filter.

Even in the standard lattice case, the derivation in Section 2 is needed for current research on the

performance of lattice filters applied to distnbuted systems, which require infinite histories in the .-\R

models. To handle forced-response data, as opposed to impulse response, the vector-channel lattice must

accomodate scalar input (NA) channels as well as vector measurement channels. A method for this has

been demonstrated. aithough the number of channels zrows lare fast with multiple inputs.

The primary motivation for the vector-channel lattice has been adaptive identification and control of

flexible structures. ('onstrainm-, all measurement channels to have the same AR model introduces

irtormation into the cstimation algorithim that reduces the effect of sensor noise, as dcmonstratcd b\ the

iminerical rcsults in Section 4. Ihc numerical results also show that the frequencies anid damnpiii,.! rat ios

for the most significant modes can be identified with a lattice whose order is lower than the number of

excited modes, even ii the presence of noise.
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Abstract Montgomery, Sundararajan [in SM1,SM2] and Wiberg

[W1[ were first to apply lattices to identification of flexible

In this paper, we present our recent investigations on structures. Montgomery, et. a., have been using a variety
lattice filters and their applications to adaptive identifica- of techniques -such as Discrete Fourier Tranforms- for the
tion of flexible structures. Since the order of the systems identication of these structures while the lattices were re-
can not be known -or the effective order may change- the lied upon mostly for order determination. Wiberg has been

order recursiveness of the lattices is of particular inter- emphasizing mainly the frequency estimation based on the
est. Implementation of lattices would permit on-line or- free response (zero input) of the system. In our research

der determination and would allow the order of the filter PJG1,J1], we have expanded the scope and developed new
to be changed without the need to reprocess the previous approaches in the application of lattice filters for adaptive

S. data. Experimental data from the flexible grid structure identification of flexible systems. Our approach uses the
at NASA-Langley are used to obtain r#%ults showing the lattice filters as the only identification tool required. We

feasibility of lattices and the advantages that result from also seek frequency (and damping ratio) estimates for a va-
their order recursive property. One-step-ahead prediction riety of input sequences with the eventual goal of adaptive
and estimates for natural frequencies are among the results control.
shown. Of particular interest are the frequency estimates In this paper, we present results obtained from the ap-
which agree closely with the frequency estimates obtained plication of lattice filters to the NASA-Langley grid, a flexi-
from off-line identification techniques. The one step-ahead- ble experimental structure used in research on control and

prediction results also show the advantages that lattices identification of space structures. These results demon-
provide with their order-determiration capability, which strate the feasibility of lattice filters for on-line identifica-
would be significant for adaptive control purposes. tion - and eventually adaptive control - of flexible struc-

tures.
1. Introduction

2. State-space and ARMA representations
Adaptive identification of flexible systems is receiving

increasing attention. Since flexible systems are often mod- For numerical work, the linear motions of flexible struc-
eled as distributed systems, they provide major practical tures are approximated by a finite dimensional differential
and theoretical challenges to the control community. Insuf-

ficient model fidelity, poor knowledge of structural damp-
ing, and the lack of feasibility for ground testing for many r (

of the large space structures are some of the contributing i(t) Az(t) + B .(t) (2.1)y~) CX(t)
factors to the recent interest in adaptive identification of

these systems. Determination of an effective system order where y is the output (measurements), u the input, etc.
is one of the most important problems, since there is no The discrete-time form of the above equation has the fol-

fixed order that can be assigned to these systems a priori, lowing well known representation:

Recertly, lattice filters are being studied for adaptive z(t + 1) = Tx(() + Biu(t)

identification of flexible structures because they can iden-( 1) Cz(t) (2.2)
tify the effective plant order as well as the parameters for
the digital input/output model of a structure. The time- For digital adaptive control and identification, the input

update equations needed for adaptive filtering were de- - output representation corresponding to (2.2) usually is

veloped by Lee, Morf, and Freidlander who studied the used. This alternative representation is

applications of lattices to speech processing and adaptive
control, see [LMFLFMJ among many. N N

=at) A S a8t - 1) + b, ,(t - i) (2.3)ThtisauHthor was suplported by AFOSR gr'at 814030@i1 =

V - V %

------- -



and is called an ARMA (Auto Regressive Moving Average)
model.

Mass and stiffness properties of a system are, tradition-
ally speaking, obtained from finite element analysis and ex-
tensive ground testing. The matrices in equations (2.1, 2.2) For n 0 to t-I
could then be formed by the standard methods. This ap-
proach, as mentioned in the previous section, is becoming r
less and less desirable, due to the properties and require- K - 1)+ e'(1)G.((- 1)r'- 1

ments associated with the modern applications of flexible
systems. G-,(- G.(t) - r) R.-O) r:(t. n- 0.1.2

Because of the difficulties associated with the identifi- ..
cation of the matrices in (2.1) and (2.2) - such as the num-
ber of parameters involved and the lack of uniqueness - the e 1(t)- e t() - r,(i- I)R'(t - 1)Kr .(,)
ARMA representation of (2.3) is more useful for adaptive
identification and control. In addition to the small number

"- of parameters involved, this model uses only the measured r '.(1) = r,(i- 1) - ,e'() R'"() K,. (')
inputs and outputs of the system (the state need not be
estimated) and it can be used for a variety of adaptive
control algorithms (see IGSIJ among many). Furthermore, R4, (t)= R (t) - K,,, (t) R,'(t- I)K, ,().
the AR coefficients contain the necessary information for ,
natural frequency (and damping) determination. This can
be seen easily by considering the single-input-single- out- R', () -Rt - I) - K.T.1(t) R;'(t)K,().
put (SISO) case. There, the AR coefficients are the same
as the coefficients of the characteristic polynomial of the
state transition matrix of equation (2.2) (for details see ",

- JG1 and C11). In [JG1, J1] we have presented methods Table 1: The Residual Error Filter Algorithm
that extends this directly to the MIMO case, as well.

Adaptive (on-line) identification of these ARMA mod- all intermediate order filters are automatically obtained,
els has been studied extensively by many authors, see the effective order of the system can be estimated so that
[LS1, GS11 for example. In most cases, however, the order the most appropriate set of coefficients (corresponding to

. of the system is assumed to be known and fixed. Such the best estimated order) are used.
assumptions, clearly, are not applicable to the flexible sys- The order determination capability of lattices is the

" terns of interest. Lattice filters, introduced in the next major reason for our interest. It should be noted, how-
section, have the capability to identify the required param- ever, that other important features of lattices are their
eters without such assumptions and can actually estimate numerical stability ILL1] and their potential for VLSI im-

, the effective order of the system as well. plementation due to their special structure which consists

of many similar modules.
3. Adaptive Identification Using Lattice Filters In [JG1,J1, we have developed a novel derivation of 9

the lattices that has two important features. The first one 9.

The most common method for the on-line estimation is the basic framework used, which lends itself nicely to
" of the ARMA coefficients is the recursive least-squares al- some of the more theoretical aspects of these flexible sys-

gorithm. In most applications, the fact that N is finite tems. The second feature is the extension of the lattices to
is not a serious limitation because the dynamic behavior the case of many measurement channels (where each chan-

. of the system can be approximated by the behavior of a nel may contain many scalar measurements). This feature
finite dimensional approximation to the system. For flex- can be exploited easily to extend the many desirable prop-
ible structures, which theoretically speaking are infinite erties of the SISO ARMA models to the MIMO systems
dimensional, it is quite common to use an approximation and hence improve the estimates for the system natural
model based on the few of the modes that are highly ex- frequencies, see [JGI,J1l for more detail.

. cited. The real problem is that, in the classical recursive The residual-error lattice algorithm is listed in Table
least-squares algorithms, N must be fixed. Depending on 1. This algorithm must be performed at each time step to
the initial conditions and external excitation, the order of update the filter variables. The variable R'(t) is one of the
the finite dimensional model required to approximate the crucial variables and is used to help determine the effective
response of the system accurately can vary widely, order of the system. Due to space limitation, the discussion

The least-squares lattice addresses this issue directly concerning this issue is omitted. For details regarding the
by providing an algorithm that can be variable-order. A initialization and definitions of other variables see [JG1,J1).
lattice filter algorithm of order n, being recursive in time The algorithm in Table 1, as mentioned before, calcu-
as well as order, results in filters of order one to n and lates the residual error; i.e., the portion of the output y(t)

-U allows the maximum order of the filter (n) to be increased that can not be fitted in a model based on all of the data
gradually, without reprocessing of the previous data. Since including y(t). A more useful approach (for prediction and
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Table 2: AR Coefficients Algorithm Figure 1: The Grid Schematic

4. The NASA-Langley Grid 1.eventually control purposes) would be the prediction error 4%
filter. By prediction error we mean the error between y(t)
and its estimate using the data up to time (t-1). Simple This grid is an experimental structure at the NASA-

modification of the above algorithm would yield a filter Langley Research Center in Hampton, Virginia, designed

that calculates the prediction error (and eliminates the for research on identification and control of flexible space

inversion of the G matrix in the process). Also, simple structures. It is a 7 ft by 10 ft planar structure made of

application of the matrix inversion formulas results in the thin, flat aluminum bars with uniform spacing (8 vertical

elimination of another inversion (preferably R') and thus and 11 horizontal bars). The grid is suspended from the1

reduce the total number of inversions to one for each time ceiling by two cables as shown in the schematic of Figure 1.

step. Again, we omit the details for the sake of brevity. Rate gyros are used to measure the rotational rate about
The prediction error lattice algorithm would be quite sime- an axis in the plane of the grid and the actuators are reac-

ilar to the residual algorithm. Four of the above equations tion wheels. The position of the actuators and sensors are
have to be modified as the following ( with and F as the marked on the diagram below.prediction errors ) : This structure has been studied extensively by Mont-

gomery, et al, [MWLN,SMIJ. Sine wave sweeps have been
used to determine the structural natural frequencies and

Kn+ 1(t) A K,+ I(t - 1) + i,,(t) Gn(t - 1) in(t - 1) the results show that the grid has as many as twenty modes
below the frequency of 10 Hz. These closely packed natural .
frequencies (and their corresponding low damping ratios)
are the main reasons for our interest in this structure for

G.+I(t) G(t) + Gn(t) idt) R-'(t - 1) F(t) Gnt) our research in adaptive identification and control of flex-
ible systems.

N
in+I (t)= i(t) - f.(t - 1) R-'(f - 2) K?., (t - 1)

S. Experimental Results .r

t) t - 1) - i,(t) R '(t - 1) K .+(t - 1) In this section, we present some of the results obtained Jb

from the grid by the lattice filter algorithms listed above.
Table 2 consists of the algorithm that generates the All of he results presented here are obtained from two test

ARMA coefficients for any desired order. For this, the runs. In the first case the input consists of a sine-wave
ARMA of (2.3) is first converted to a two-channel AR form with a varying frequency. The second case has a square-
(using a simple embedding). This part is presented sepa- wave as the input and is used to excite numerous modes
rately to underscore the point that these coefficients need of the structure. In each case, the aim is to identify the
not be updated at every time step. Rather, this algorithm most important natural frequencies (and their correspond-
is invoked at any time (and for any order) desired to gener- ing damping) and study the behavior of the prediction er-
ate the ARMA coefficients and will be turned off at other ror for different filter orders.
times. Figure 2 is a sample of the sensor measurements for

Other technical issues (such as the required embedding, the case of square input. The top plot is the first sensor, r.
the reduced lattice structure to determine the input for the the second plot corresponds to sensor number 2, etc. It
control applications, etc.) are discussed in [Jl1. is clear that, although all sensors have certain amount of
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Figure 3: Frequency of Input Signal as Identified by Lattice
Figure 2: Sample of Sensor Measurements: Sensors 1-4

Naturally, the noisy sensor (four) gives the worst estimates
noise, sensor four is quite noisy and sensor three seems to and, in one exceptional case, can not identify one of the low
be saturated most of the time. Overall, sensor two has the modes. In all of our studies we have seen, consistently, that
best measurements, for a given input sequence and sensor, high order filters are

The first set of results concern the prediction error and needed to identify the frequency while good prediction can
its behavior as the order of the filter increases. Since most be obtained from much lower order lattices. The results
of the available adaptive control algorithm are based on below are all obtained from a lattice filter of order 48 using
some prediction for the future outputs (one or more steps the sensor-two measurements.
ahead), this study is the first step toward the eventual Estimating the damping ratios is another topic of in-
adaptive control of these systems. Figue 4 shows the ac- terest. The structure is widely believed to have non-linear,
tual outputs (the first graph) and the (one step ahead) pre- vibration-level dependent damping. The results here show
dicted value of the output for different order filters. The that although a linear (and proportional) damping model
saw-tooth curve around the horizontal axis is the actual does not fit the data, an approximate model with such
prediction error for that order filter. The error is plot- properties would have the expected damping levels. Also,
ted on the same scale so that it can be compared with it was observed consistently that the quare wave input
the actual prediction. Also note the drop in the average (which caused substantial vibration in the grid) results in
magnitude of the error, as the filter order is increased, higher damping for the modes of the structure.

As these graphs show, the general shape of the response Three sets of natural frequencies are identified. The
(correponding to the dominant modes) is identified and first set is a group of three low frequencies (including the
predicted by relatively low order lattices. The high fre- dominant one around .56 Hz). The behavior of these modes
quency content of the signal, however, requires filters of -the third one in particular- is quite interesting. The sec-
significantly larger order. This is evident in the peaks of ond and third modes are not quite identified by the lattice
the signal where the high frequencies are more distinguish- at the beginning. Once these modes receive substantial
able. The next graph (Figue 5) is the magnified version of excitation (i.e., when the input frequency is close to the

Figure 4. There, the behavior of the prediction (and the natural frequencies), the lattice results in good estimates
corresponding error) is underscored more clearly, for them. This can be seen by a simple comparison of

Next, we will summarize some of results regarding the the input frequencies (Figure 3) and the natural frequen-
• natural frequency estimates of the system. We have cho- cies (Figure 6). Also the behavior of the damping ratio

sen to present the results from the case of sinewave input, estimates is presented for one of the modes which is repre-
.1 The results obtained from this case show that the domi- sentative of the rest.

nant frequencies can be identified with inputs that are not The second set of frequencies are those which the higher

sufficiently rich to excite all of the frequencies (in the sense modes which are not as highly excited as the first three
of (GS1,LS1I). Also, a few interesting issues that arise due frequencies and require large order filters (generally speak-
to the specific nature of the input signal can be discussed. ing). Figure 7 shows the first three of these modes.
The frequency of the input sinewave was increased gradu- The third set of modes are a group of high frequency

- ally according to Figure 3 (this graph was obtained from modes which have extremely low damping (typically less

a simple single channel lattice). than one percent critical) which are present in all cases
All four sensors see these frequencies for both inputs, and are identified very quickly. Further investigation of
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